35. 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5 输出: 2
示例 2:输入: nums = [1,3,5,6], target = 2 输出: 1
示例 3:输入: nums = [1,3,5,6], target = 7 输出: 4
class Solution:
def searchInsert(self, nums: List[int], target: int) -> int:
l,r=0,len(nums)-1
while l<=r:
mid=(l+r)//2
if nums[mid]<target:
l=mid+1
elif nums[mid]>target:
r=mid-1
else:
return mid
# 假设插在末尾 l不断左移动 r=len(nums)-1 所以插入在len(nums)处
return r+1
69. x 的平方根
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
示例 1:
输入:x = 4 输出:2
示例 2:输入:x = 8 输出:2 解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。
class Solution(object):
def mySqrt(self, x):
"""
:type x: int
:rtype: int
"""
if x == 0 or x == 1:
return x
low, high, res = 1, x, -1
while low <= high:
mid = (low + high) // 2
# 防止mid*mid超出int上限
if x/mid>=mid:
res = mid
low = mid + 1
else:
high = mid - 1
return res
367. 有效的完全平方数
给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
示例 1:
输入:num = 16 输出:true
示例 2:输入:num = 14 输出:false
class Solution:
def isPerfectSquare(self, num: int) -> bool:
l=1
r=num
while(l<=r):
mid=(l+r)//2
if mid*mid==num:
return True
elif mid*mid<num:
l=mid+1
else:
r=mid-1
return False
34. 在排序数组中查找元素的第一个和最后一个位置
给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8 输出:[3,4]
示例 2:输入:nums = [5,7,7,8,8,10], target = 6 输出:[-1,-1]
示例 3:输入:nums = [], target = 0 输出:[-1,-1]
class Solution(object):
def find_left(self,nums,target):
l=0
r=len(nums)-1
while l<=r:
mid=(l+r)//2
# 如果找到了 继续找左边界 找第一个>=target 的值
if nums[mid]==target:
r=mid-1
elif nums[mid]>target:
r=mid-1
else:
l=mid+1
# 因为l>r 此时跳出循环 r条件是mid-1 有可能是第一种nums[mid]==target的情况
# 所以看看l是不是符合(因为此时l=r+1 所以l有可能是mid )
if nums[l]== target:
return l;
else:
return -1;
def find_right(self,nums,target):
l=0
r=len(nums)-1
while l<=r:
mid=(l+r)//2
# 如果找到了 继续找右边界 找最后一个<=target 的值
if nums[mid]==target:
l=mid+1
elif nums[mid]>target:
r=mid-1
else:
l=mid+1
# 因为l>r 此时跳出循环 l条件是mid+1 有可能是第一种nums[mid]==target的情况
# 所以看看r是不是符合(因为此时l-1=r 所以r有可能是mid )
if nums[r]== target:
return r;
else:
return -1;
def searchRange(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
# 数组递增 最后一个数比target小 或者第一个数比targe大
if len(nums)==0 or nums[0]>target or nums[-1]<target:
return[-1,-1]
ll=self.find_left(nums,target)
rr=self.find_right(nums,target)
return[ll,rr]