96、分治法计算二项式理想

分治法计算二项式理想

1. 引言

在多项式环 $k[x_1, \ldots, x_n]$ 中,二项式是形如 $c \cdot x^{\Sigma} + d \cdot x^{\Lambda}$ 的多项式,其中 $c, d \in k$ 且 $\alpha, \beta \in N^n$。由二项式生成的理想称为二项式理想。与一般多项式理想不同,二项式理想具有丰富的组合结构,可用于计算诸如 Gröbner 基、主分解和关联素理想等结构。

二项式理想的研究不仅具有学术意义,还在多个领域有实际应用,如整数规划求解、原始分区恒等式计算、调度问题求解以及代数统计中的离散指数族闭包研究等。

本文提出一种分治法来计算与二项式理想相关的几个重要对象,动机源于两个关键观察:
- 大多数二项式理想的计算涉及计算某些理想的 Gröbner 基。
- Buchberger 算法计算 Gröbner 基对底层多项式环中的变量数量非常敏感。

分治法的核心思想是将问题分解为变量数量少于原始环的子问题,在这些子问题中求解,然后将结果提升回原始环并组合以得到原问题的解。

2. 背景知识

为了便于理解,我们先介绍一些符号:
- 对于环 $R$,若 $r_1, \ldots, r_s \in R$,则 $\langle r_1, \ldots, r_n \rangle$ 表示由 $r_1, \ldots, r_n$ 生成的理想。
- 对于理想 $I \subseteq R$,$\sqrt{I} = { r | r^m \in I, m > 0 }$ 是 $I$ 的根理想。$I : r^{\infty}= { s

STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动内容概要:本文档为一份关于STM32电机控制的无传感器版本代码注释资源,聚焦于龙贝格观测器在永磁同步电机(PMSM)无感控制中的应用。内容涵盖三电阻双通道AD采样技术、前馈控制、弱磁控制及斜坡启动等关键控制策略的实现方法,旨在通过详细的代码解析帮助开发者深入理解于STM32平台的高性能电机控制算法设计与工程实现。文档适用于从事电机控制开发的技术人员,重点解析了无位置传感器控制下的转子初始定位、速度估算与系统稳定性优化等问题。; 适合人群:具备一定嵌入式开发础,熟悉STM32平台及电机控制原理的工程师或研究人员,尤其适合从事无感FOC开发的中高级技术人员。; 使用场景及目标:①掌握龙贝格观测器在PMSM无感控制中的建模与实现;②理解三电阻采样与双AD同步采集的硬件匹配与软件处理机制;③实现前馈补偿提升动态响应、弱磁扩速控制策略以及平稳斜坡启动过程;④为实际项目中调试和优化无感FOC系统提供代码参考和技术支持; 阅读建议:建议结合STM32电机控制硬件平台进行代码对照阅读与实验验证,重点关注观测器设计、电流采样校准、PI参数整定及各控制模块之间的协同逻辑,建议配合示波器进行信号观测以加深对控制时序与性能表现的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值