分治法计算二项式理想
1. 引言
在多项式环 $k[x_1, \ldots, x_n]$ 中,二项式是形如 $c \cdot x^{\Sigma} + d \cdot x^{\Lambda}$ 的多项式,其中 $c, d \in k$ 且 $\alpha, \beta \in N^n$。由二项式生成的理想称为二项式理想。与一般多项式理想不同,二项式理想具有丰富的组合结构,可用于计算诸如 Gröbner 基、主分解和关联素理想等结构。
二项式理想的研究不仅具有学术意义,还在多个领域有实际应用,如整数规划求解、原始分区恒等式计算、调度问题求解以及代数统计中的离散指数族闭包研究等。
本文提出一种分治法来计算与二项式理想相关的几个重要对象,动机源于两个关键观察:
- 大多数二项式理想的计算涉及计算某些理想的 Gröbner 基。
- Buchberger 算法计算 Gröbner 基对底层多项式环中的变量数量非常敏感。
分治法的核心思想是将问题分解为变量数量少于原始环的子问题,在这些子问题中求解,然后将结果提升回原始环并组合以得到原问题的解。
2. 背景知识
为了便于理解,我们先介绍一些符号:
- 对于环 $R$,若 $r_1, \ldots, r_s \in R$,则 $\langle r_1, \ldots, r_n \rangle$ 表示由 $r_1, \ldots, r_n$ 生成的理想。
- 对于理想 $I \subseteq R$,$\sqrt{I} = { r | r^m \in I, m > 0 }$ 是 $I$ 的根理想。$I : r^{\infty}= { s
超级会员免费看
订阅专栏 解锁全文
1060

被折叠的 条评论
为什么被折叠?



