BZOJ 2005 能量采集 (欧拉函数)

转载至http://blog.csdn.net/clove_unique


题目链接

https://vjudge.net/problem/HYSBZ-2005

题解

首先证明对于某个点(x,y),k=gcd(x,y)-1: 
设gcd(x,y)=t,令x=at,y=bt,那么在这条直线上的整数点可以表示为(a,b)(2a,2b)(3a,3b)……(x,y),由于不算x,y,则答案为gcd(x,y)-1 
那么总损耗2k+1=2×gcd(x,y)-1。 
我们最终要求的式子为: 
i=1nj=1m(gcd(i,j)21)  
=2i=1nj=1mgcd(i,j)nm  
那么我们只需要算出 i=1nj=1mgcd(i,j) 这个式子就可以了 
推导如下: 
i=1nj=1mgcd(i,j)  
=i=1nj=1md|gcd(i,j)ϕ(d)  
=i=1nj=1md=1n[d|i][d|j]ϕ(d)  
=d=1ni=1n[d|i]j=1m[d|j]ϕ(d)  
=d=1nndmdϕ(d)

实际上 ndmd 只有 (n+m) 个取值。 
可以用分块来求。 
需要预处理phi的前缀和。

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define LL long long

const int max_n=1e5+5;

LL n,m,ans;
LL p[max_n],phi[max_n],prime[max_n];

inline void get_phi(){
    phi[1]=1;
    for (int i=2;i<=n;++i){
        if (!p[i]){
            prime[++prime[0]]=i;
            phi[i]=i-1;
        }
        for (int j=1;j<=prime[0]&&i*prime[j]<=n;++j){
            p[i*prime[j]]=1;
            if (i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else
              phi[i*prime[j]]=phi[i]*(prime[j]-1);

        }
        phi[i]+=phi[i-1];
    }
}

int main(){
    scanf("%lld%lld",&n,&m);
    if (n>m) swap(n,m);
    get_phi();
    for (LL i=1,j;i<=n;i=j+1){
        j=min(n/(n/i),m/(m/i));
        ans+=(LL)(phi[j]-phi[i-1])*(n/i)*(m/i);
    }
    printf("%lld\n",ans*2-n*m);
}

另外,本题还有一种程序更简便的解法。令f(k)为gcd(i, j) == k的数对的个数,令F(k)为gcd(i, j)为k的倍数的数对的个数。则F(k) = ∑f(i*k),其中 i*k <= min(n, m),另外也有F(k) = (n/k) * (m/k),所以f(k) = (n/k)*(m/k) - f(2*k) - f(3*k) - f(4*k) ... ... ,逆推出来即可。

#include<cstdio>
#include<cstring>
#include<string>
#include<cctype>
#include<iostream>
#include<set>
#include<map>
#include<cmath>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#define fin(a) freopen("a.txt","r",stdin)
#define fout(a) freopen("a.txt","w",stdout)
typedef long long LL;
using namespace std;
const int INF = 1e8 + 10;
const int maxn = 1e5 + 10;
LL f[maxn]; //f[i] : gcd(x, y) == i的数的个数

int main() {
   int n, m;
   scanf("%d%d", &n, &m);
   int t = min(n, m);
   LL ans = 0;
   for(int i = t; i >= 1; i--) {
      f[i] = (LL)(m/i)*(n/i);
      for(int j = i+i; j <= t; j += i)
         f[i] -= f[j];
      ans += f[i] * (2*i-1);
   }
   printf("%lld\n", ans);
   return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值