bellman算法

11 篇文章 0 订阅

先介绍一下bellman算法:

Bellman-ford算法是求含负权图的单源最短路径算法,效率很低,但代码很容易写。即进行持续地松弛(原文是这么写的,为什么要叫松弛,争议很大),每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环,无法得出结果,否则就成功完成。Bellman-ford算法有一个小优化:每次松弛先设一个标识flag,初值为FALSE,若有边更新则赋值为TRUE,最终如果还是FALSE则直接成功退出。Bellman-ford算法浪费了许多时间做没有必要的松弛,而SPFA算法用队列进行了优化,效果十分显著,高效难以想象。SPFA还有SLF,LLL,滚动数组等优化。

bellman的核心代码如下示例:

n,m分别代表点的个数和边的条数.

 

     for(int k=1;k<=n-1;k++)//遍历点的次数
        {
            for(int i=1;i<=m;i++)//遍历边的次数
            {
                if(dis[v[i]]>dis[u[i]]+w[i])//如果从u到v的距离能够通过w这条边压缩路径 就要进行松弛操作
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                }
            }
        }

 

 

两个for循环注定比弗洛伊德的复杂度低 效率会更高 .这时候我就想问了 为什么一定是经过k-1轮次的操作呢~?

为啥不是k-2或者更少呢?

这里就要考虑最坏的情况了~.如果需要松弛操作的地方比较多 那么松弛的轮数也会随之增加 .

但是并不是所有情况都需要k-1轮操作 那么如何优化算法呢?

这个时候算法大牛说话了:如果在当前一轮的操作中 没有经过松弛操作  那么这个时候就已经不用继续松弛了~

所以就有了如下代码~;

        for(int k=1;k<=n-1;k++)
        {
            check=0;//用check检查是否进行下一轮次的操作
            for(int i=1;i<=m;i++)
            {
                if(dis[v[i]]>dis[u[i]]+w[i])
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                    check=1;
                }
            }
            if(check==0)break;
        }

 

 

要注意的是:

                if(dis[v[i]]>dis[u[i]]+w[i])//如果从u到v的距离能够通过w这条边压缩路径 就要进行松弛操作
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                }

 

这只是在改变单源路径的权值.

只是在改变从u到v的权值

所以如果我们遇到的题目是无向图 如2544(杭电)就需要如下代码来完成操作:

 

        for(int k=1;k<=n-1;k++)
        {
            check=0;
            for(int i=1;i<=m;i++)
            {
                if(dis[v[i]]>dis[u[i]]+w[i])
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                    check=1;
                }
                if(dis[u[i]]>dis[v[i]]+w[i])
                {
                    dis[u[i]]=dis[v[i]]+w[i];
                    check=1;
                }
            }
            if(check==0)break;
        }

 

完整代码:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
using namespace std;
int dis[121212];
int u[121212];
int v[121212];
int w[121212];
int main()
{
    int n,m;
    int check;
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0||m==0)break;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&u[i],&v[i],&w[i]);
        }
        for(int i=1;i<=n;i++)
        {
            dis[i]=0x1f1f1f1f;
        }
        dis[1]=0;
        for(int k=1;k<=n-1;k++)
        {
            check=0;
            for(int i=1;i<=m;i++)
            {
                if(dis[v[i]]>dis[u[i]]+w[i])
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                    check=1;
                }
                if(dis[u[i]]>dis[v[i]]+w[i])
                {
                    dis[u[i]]=dis[v[i]]+w[i];
                    check=1;
                }
            }
            if(check==0)break;
        }
        printf("%d\n",dis[n]);
    }
}

 

 

ellman算法有一个特性是弗洛伊德所不能企及的一个点 :解决负权路问题;

这里贴上解决负权路问题的代码:(以2544为例)

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
using namespace std;
int dis[121212];
int u[121212];
int v[121212];
int w[121212];
int main()
{
    int n,m;
    int check;
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0||m==0)break;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&u[i],&v[i],&w[i]);
        }
        for(int i=1;i<=n;i++)
        {
            dis[i]=0x1f1f1f1f;
        }
        dis[1]=0;
        for(int k=1;k<=n-1;k++)
        {
            check=0;
            for(int i=1;i<=m;i++)
            {
                if(dis[v[i]]>dis[u[i]]+w[i])
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                    check=1;
                }
                if(dis[u[i]]>dis[v[i]]+w[i])
                {
                    dis[u[i]]=dis[v[i]]+w[i];
                    check=1;
                }
            }
            if(check==0)break;
        }
        int flag=0;//标记是否有负权回路...
        for(int i=0;i<=m;i++)
        {
                if(dis[v[i]]>dis[u[i]]+w[i])
                {
                    dis[v[i]]=dis[u[i]]+w[i];
                    flag=1;
                }
                if(dis[u[i]]>dis[v[i]]+w[i])
                {
                    dis[u[i]]=dis[v[i]]+w[i];
                    flag=1;
                }
        }
        if(flag==1){printf("0\n");continue;}
        printf("%d\n",dis[n]);
    }
}

 

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Bellman算法是用来解决最短路径问题的一种动态规划算法。在C++中,可以使用邻接矩阵或邻接表来表示图,并使用循环来实现Bellman算法。 首先,你需要定义一个图的数据结构,可以使用邻接矩阵或邻接表来表示图的边和权重。然后,你可以使用一个数组来保存每个节点的最短路径值,并初始化它们为无穷大。 接下来,你可以使用循环来迭代计算每个节点的最短路径值。在每次迭代中,遍历图中的所有边,并更新到达每个节点的最短路径值。具体的更新规则是,对于每条边(u, v),如果从起始节点到u的路径加上边(u, v)的权重小于当前已知的从起始节点到v的路径长度,则更新v的最短路径值。 重复上述步骤,直到没有节点的最短路径值发生改变或达到最大迭代次数为止。最后,你可以通过检查最短路径值数组来获得从起始节点到其他节点的最短路径长度。 这是一个简单示例代码,使用邻接矩阵表示图: ```cpp #include <iostream> #include <vector> #include <limits> #define INF std::numeric_limits<int>::max() void bellmanFord(std::vector<std::vector<int>>& graph, int start) { int numNodes = graph.size(); std::vector<int> dist(numNodes, INF); dist[start] = 0; for (int i = 0; i < numNodes - 1; ++i) { for (int u = 0; u < numNodes; ++u) { for (int v = 0; v < numNodes; ++v) { if (graph[u][v] != 0 && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; } } } } // 检查是否存在负权回路 for (int u = 0; u < numNodes; ++u) { for (int v = 0; v < numNodes; ++v) { if (graph[u][v] != 0 && dist[u] + graph[u][v] < dist[v]) { std::cout << "Graph contains negative weight cycle" << std::endl; return; } } } // 输出最短路径值 for (int i = 0; i < numNodes; ++i) { std::cout << "Shortest path from start to node " << i << ": " << dist[i] << std::endl; } } int main() { std::vector<std::vector<int>> graph = { {0, 6, 0, 0, 0}, {0, 0, 5, -4, 0}, {0, -2, 0, 0, 0}, {1, 0, 7, 0, -2}, {2, 0, 0, 8, 0} }; int startNode = 0; bellmanFord(graph, startNode); return 0; } ``` 这个示例代码中的图是一个有向图,使用邻接矩阵表示。你可以根据你的具体需求进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值