【励志】知乎热门:我是怎么变自律的?

早起不仅让人精神焕发,还能提高工作效率,带来更强的控制感和成就感。本文分享了作者从晚睡晚起到早睡早起的转变过程,以及早起如何帮助他重新找回对生活的掌控,实现自律和目标。早起能让人在清晨享受宁静,更好地规划一天,减少焦虑,提升生活质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自律,不是人生的一项技能,它就是人生。

上大学的时候我算是比较自律的,每天晚上,不管刮风下雨,都得到操场上跑个10圈。

天天精力旺盛,干啥都有精神,虽然穷了吧唧的,但心态可乐观了,没有周边人那种特明显的焦虑。

那个时候我就发现:一个人的生活,其实是“以点带面”,抓住了一点,就能全部带动起来。

拿锻炼来说,如果每天都是固定的,你会发现,你的整个生活,都会慢慢变得有节奏。每日三餐按时吃饭、按时睡觉自不用说,连去图书馆看枯燥的书,这种不情不愿的事儿,也几句话就能说服自己了。

我后来想了一下,定期跑步这件事,其实已经深深地改变了我的自我认知,让我确认了自己“是一个自律的人”,跟普通人不一样。

“既然跟普通人不一样,那普通人做不到的事,我应该可以办到吧。”

 

 

 

 

虽然现在想起来,我当时其实也没什么特别的,不如很多同学脑瓜子聪明……但这种有点中二的“误解”,也算是给我后面的生活工作,打下了坚实的基础。

后来毕业了,到公司当程序猿,虽然也不是太累,但因为没了学校的大操场,锻炼,也就搁下了。

然后半年多过去了,一盘算,好嘛,没想到变了这么多:

每天晚睡晚起、工作纯属摸鱼、人生毫无长进、徒增肥膘万斤……

当时的念想就是:我的人生,垮了。

着急啊,就想着,该怎么提溜起来呢?!做时间管理?去健身房锻炼?强制自己自律起来?

太难了。

直到一次实验性的早起,一切,才终于拨云见日。

原来,自律,也没这么难嘛,只要做到一件事就成了:早起。

01 早起的好处

如果你早起一次——起得越早越好,大概早上6点左右,你会发现,整个世界完全不一样:

  • 你在精神上会有一种特别“清爽”的感觉;

  • 很多看起来很繁重枯燥的事情,你上手会发现好像也没那么难;

  • 如果要看什么东西,你会自然地倾向于看点“有用的”,比如新闻,比如有用的干货,等等,而不是早上起来就打游戏看视频,那样你自己都会觉得有点不舒服。

从6点多到早上9点,等你意识到时间“才早上9点”的时候,你会有一种自己“凭空赚了2个多小时”的体验,自我感觉也会更好。

我相信你很熟悉一种感觉:如果你在周五熬夜,周六大睡个半天,然后再起来吃吃饭随便看看,你会感觉很快就到了晚上,这一天好像什么都没干,一咋眼就过去了。

但你只要早起一次,到了晚上,你会明显感觉这一天“经历了很多事”,好像很漫长、很充实。

最重要的是,早起,不像是跑步,或者刻意训练之下的“自律”,它没那么困难,只要头一晚上早点睡就行了。

你会发现:很多学习和工作上的事情,你只要放在很早的早上,用不着多么强的自我控制,就能顺势启动、开展。整个过程的效率也非常高,就好像往空荡荡的大脑里扔东西一样简单。

 

 

 

 

02 为啥是早起?

为什么早上比较容易自律?因为人的意志力是一个持续消耗的资源,早上最强,晚上最弱,你之所以能在早上,没什么压力就能进入工作状态,是因为早上的意志力资源最丰富。

早上的大脑状态也较好,对知识有一种自然而然的“渴求感”,你更容易静下心来,干正事儿,而不是娱乐和摸鱼。

只要你起得足够早,你的朋友就还在梦乡里,就没有什么要紧事儿需要找你,也没什么新鲜事儿要发在朋友圈,这等于去除了社交事务对你的影响。

如果你以前就不是一个自律的人,也没什么习惯,常年晚睡晚起、作息不规律,那么,早起,是最好的“人生启动器”。只要试着早起一次,你就能马上收获早起带来的“快感”;早起一次,你就会感觉你重新获得了对生活的“控制感”。

自律的核心,就是“控制感”。

为什么?

首先,这世界上有两种自律,一种是消极的,外部驱动的,比如你每天要上学,固定时间上课;或者你要去上班,固定时间打卡,非常“自律”,但都是迫不得已但是又必须要做的。

一种是积极的,或者说,内部驱动的。是你知道这么做很好,很舒服,很有成就感,很有意义。你做起来不用消耗太多意志力,就能成。

大部分外部驱动的事情,哪怕诱因很强,也难以长久,顶多,也只能成为一种战术,凑合用一段时间。

长远来看,当代人类的痛苦之源,就在于必须在外部驱动之下“自律地生活”。

这种生活,你根本没有“控制感”。

而一但是你主动出击,那么自律,对你来说,就是一件可控的事儿,一件——你自己可以明显感觉到的,创造你自己专属生活的事。

控制感的发展,又是“正反馈”的。

也就是说,随着你从早起开始,把控人生,你会越来越有自信,会去主动把控更多的事情,把它们当成是一个模块、一个项目来完成。做事的意义,就会逐渐浮现,你再不是一个,为了生活徒劳奔波的无头苍蝇了。

就像我上面提到的“跑步”一样,你的整个人生,都被“带”起来了。

我们想想,为什么很多情况下,我们都喜欢把事情拖到deadline再做呢?

就是因为,你在内心深处,知道你要做的事,是迫不得已要做的事、不是你主动愿做的事。

 

 

 

 

03 晚睡:时代的骗局

再聊聊我自己。

说实话,刚毕业的那段时间,我确实特别不自律,喜欢晚睡,常常玩儿到半夜一两点,第二天9点多再爬起来上班。(我特意选了一个离公司很近,但住宿环境一般般、房租还挺贵的地方住。)

到了周末,就宅在家里,点点外卖,看看视频,打打游戏,时间刷一下就过去了。

半年之后,回想总结了一下我自己的生活,才恍然发现:这半年,基本上什么都没有收获,反而人也胖了、心情也丧了、工作效率也特低……

仔细想了想,是因为我实在是太喜欢晚睡了。

为什么晚睡呢?一方面,是因为我潜意识里面,觉得工作一天了,随便刷刷手机应该挺OK的;另一方面,是晚上的信息,太丰富太好玩儿了!

就连很多公众号,都特别喜欢晚上10点左右更新内容——因为这是当代人,特别是一线城市年轻人,最具有“信息消费欲望”的时间段。

本来人在晚上的意志力就最薄弱、最想看好玩儿的东西,手机上的信息却又偏偏在晚上的时候最丰富……

这不也是一个正反馈吗?堕落的正反馈。

于是,我抱着实验的心态,尝试“抵抗一下这个时代”——早睡早起。

一开始早睡比较难,但我吃了点褪黑素,用T恤搭在眼睛上,让眼睛慢慢变热,也就很容易睡着了。

第二天起床一看,嘿,才早上7点!

我慢悠悠地洗漱、浏览了下新闻,到楼下买了顿早餐,把我脏乱差的房间重新整理了一遍,一看手机,也才8:30。

整个感觉完全不一样了,我突然觉得这一天心情特别好,特别有活力,走在路上,每个人的颜值都提升了,就在去公司的那一小段路上,我都发现了很多以前没有注意的、特别有意思的人和事儿。

生活,扑面而来。

接下来,我逐渐调整作息,恢复锻炼,让早起的状态越来越好。

我6点多起来之后,还会习惯性地先看点书,有的书看的很快,一两个小时就能翻完。工作效率也提高了不少,心态也乐观了,更能沉下心来解决各种难题。

这一切,完全不是强制自己去“自律”,而是我自己知道它的“甜处”,自然就愿意持续下去。

因此,为了自律以及更美好的人生,我推荐你:早起!

04 总而言之

很久之前,我在新疆,冬天,朋友开着车,我们一起去戈壁滩上看雪。

到地儿了,朋友叫醒了打瞌睡的我,我刚睁开眼,就被窗外的景观,给震惊到了!

我赶紧下车,放眼一看,当时的感觉,就像是来到了外星球一样——天地一片苍茫,除了雪,根本看不到别的东西;太阳孤悬于九天,仿佛已经静止了一千年。没有人、没有树、没有建筑……我们已经脱离了人类的世界。(附一张近似的图,如下:

 

 

我们常说,看到“更大的世界”,人的心态就回不去了。

我觉得,对于每个人的人生而言,早起,如果也能变成你的习惯,你的感觉,就像是我第一次见到千里雪原一样,会发现一个非常大的世界——你一旦体验了这个世界的好,你就很难回去了。

你的人生,自然就慢慢自律了起来。

另外呢,品尝过早起的百般好处,你就会有一种持续优化它的冲动。比如说,为了早起,你会自然而然地早睡;为了早起后精神状态更好,你会选择头一天锻炼个15分钟;你的作息和三餐,也会逐渐变得更加规律。

早起,给你的人生提供了一个自律的框架,带动你的整个人生,慢慢变好。

与君共勉!

### 大型模型缩放定律 #### 数学表示 大型模型缩放定律描述了模型性能随参数数量、训练数据量以及计算资源增加而化的关系。研究表明,在一定范围内,随着这些量的增长,模型的表现会持续提升[^4]。 对于Transformer架构而言,当扩大模型规模时,可以观察到损失函数值逐渐减小的趋势。具体来说,如果设\( L \)为验证集上的平均负对数似然度,则存在如下关系: \[ L(N, D, C) ≈ k_1 N^{-\alpha} + k_2 D^{-\beta} + k_3 C^{-\gamma}, \] 其中 \( N \), \( D \), 和 \( C \) 分别代表参数数目、样本大小和浮点运算次数;\( α \), \( β \), 及 \( γ \) 是经验常数;\( k_i \)(i=1,2,3) 表示其他影响因子。 ```python import numpy as np from matplotlib import pyplot as plt def loss_function(n_params, n_samples, flops): alpha, beta, gamma = 0.5, 0.3, 0.7 # 假定的经验指数 k1, k2, k3 = 1., .5, .8 # 影响系数 return k1 * pow(n_params, -alpha) + \ k2 * pow(n_samples, -beta) + \ k3 * pow(flops, -gamma) n_params_range = np.logspace(1e6, 1e9, num=50) losses = [loss_function(p, 1e7, 1e18) for p in n_params_range] plt.plot(np.log10(n_params_range), losses) plt.xlabel('Log Parameter Count') plt.ylabel('Loss Value') plt.title('Effect of Increasing Parameters on Loss Function') plt.show() ``` 此图展示了通过增大参数数量如何降低损失函数的理论趋势。 #### 实际应用 在实践中,遵循缩放法则可以帮助研究人员预测更大规模网络的效果,并据此规划硬件需求和技术路线。例如,在视觉领域的大规模预训练任务中,通过合理配置GPU集群并适当调整超参设置,能够有效提高最终成果的质量[^1]。 此外,理解缩放规律也有助于优化小型化部署方案的设计思路——即如何选取合适的子网结构以保持较高精度的同时减少资源消耗。 #### 最新进展 最新的研究不仅关注单维度扩展的影响,还探索多维联合增长模式下的最优路径。比如,有学者发现同步增加宽度(隐藏层单元数)、深度(层数)与批量尺寸可以在不显著牺牲效率的前提下获得更好的泛化能力。与此同时,“解释调整”技术也被引入进来作为改进策略之一,旨在使小型模型更好地模拟大型模型的行为特征而非仅仅复制其输出结果[^2]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值