树的层序遍历,平衡二叉树,以及反转二叉树

一、树的层序遍历

层序遍历的实现:

1.依赖于队列的数据结构

2.核心怎么实现:

        1)创建一个队列的容器对象。

        2)判断根节点是否为空,不为空则添加根节点到队列中。

        3)遍历是一个循环性的工作,写一个死循环,死循环的第一步就是跳出死循环的条件:当队列中没有东西时退出(换句话说,没东西可遍历了)。

        4)每弹出一个元素,再访问(就是进行符合场景的操作),最后添加两边的左右子节点(如果不为空的话)。

代码实现:

队列的代码:

#pragma once

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
#include<stdbool.h>

typedef struct BinaryTreeNode* QDataType;

typedef struct QueueNode
{
	struct QueueNode* _pNext;
	QDataType _val;
}QNode;

typedef struct Queue
{
	QNode* _front;
	QNode* _rear;
	int size;
}Queue;

void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);

// 队尾插入
void QueuePush(Queue* pq, QDataType x);
// 队头删除
void QueuePop(Queue* pq);

// 取队头和队尾的数据
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);

int QueueSize(Queue* pq);
bool QueueEmpty(Queue* pq);

 队尾插入
//void QueuePush(QNode** pphead, QNode** pptail, QDataType x);
 队头删除
//void QueuePop(QNode** pphead, QNode** pptail);
#include"Queue.h"
// 初始化队列
void QueueInit(Queue* q)
{
	assert(q);
	q->_front = NULL;
	q->_rear = NULL;
	q->size = 0;
}
// 队尾入队列
void QueuePush(Queue* q, QDataType data)
{
	assert(q);
	QNode* tmp = (QNode*)malloc(sizeof(QNode));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	else
	{
		tmp->_data = data;
		tmp->_pNext = NULL;
	}
	if (q->_rear == NULL)
	{
		q->_front = q->_rear = tmp;
	}
	else
	{
		q->_rear->_pNext = tmp;
		q->_rear = tmp;
	}
	q->size++;
}
// 队头出队列
void QueuePop(Queue* q)
{
	assert(q);
	assert(q->_front);
	assert(q->size != 0);
	if (q->_front->_pNext == NULL)//只有一个节点
	{
		free(q->_front);
		q->_front = q->_rear = NULL;
	}
	else
	{
		QNode* next = q->_front->_pNext;
		free(q->_front->_pNext);
		q->_front = next;
	}
	q->size--;
}
// 获取队列头部元素
QDataType QueueFront(Queue* q)
{
	assert(q);
	assert(q->_front);
	return q->_front->_data;
}
// 获取队列队尾元素
QDataType QueueBack(Queue* q)
{
	assert(q);
	assert(q->_rear);
	return q->_rear->_data;
}
// 获取队列中有效元素个数
int QueueSize(Queue* q)
{
	assert(q);
	return q->size;
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q)
{
	assert(q);
	return q->size == 0;
}
// 销毁队列
void QueueDestroy(Queue* q)
{
	QNode* tmp = q->_front;
	while (tmp != NULL)
	{
		QNode* next = tmp->_pNext;
		free(tmp);
		tmp = next;
	}
	q->_front = q->_rear = NULL;
	q->size = 0;
}
void TreeLevelOrder(BTNode* root)//层序遍历
{
	Queue pq;
	QueueInit(&pq);
	if (root)
		QueuePush(&pq, root);

	while (!QueueEmpty(&pq))
	{
		BTNode* front = QueueFront(&pq);
		QueuePop(&pq);

		printf("%d ", front->_data);

		if (front->_left)
			QueuePush(&pq, front->_left);

		if (front->_right)

			QueuePush(&pq, front->_right);
	}
	QueueDestroy(&pq);
}

二、平衡二叉树的判断

这道题中的平衡二叉树的定义是:二叉树的每个节点的左右子树的高度差的绝对值不超过 111,则二叉树是平衡二叉树。根据定义,一棵二叉树是平衡二叉树,当且仅当其所有子树也都是平衡二叉树,因此可以使用递归的方式判断二叉树是不是平衡二叉树,

int maxDepth(struct TreeNode* root){
    return root ? 1 + fmax(maxDepth(root->left) , maxDepth(root->right)) : 0;      
}

bool isBalanced(struct TreeNode* root){
    if(root == NULL)
        return true;
    int left = maxDepth(root->left);
    int right = maxDepth(root->right);
    return abs(left - right) < 2
        && isBalanced(root->left)
        && isBalanced(root->right);
}

三、树的反转

这是一道很经典的二叉树问题。显然,我们从根节点开始,递归地对树进行遍历,并从叶子节点先开始翻转。如果当前遍历到的节点 root 的左右两棵子树都已经翻转,那么我们只需要交换两棵子树的位置,即可完成以 root为根节点的整棵子树的翻转。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
struct TreeNode* invertTree(struct TreeNode* root) {
    if(root==NULL)
    {
        return NULL;
    }
    struct TreeNode*tmp=root->left;
    root->left=root->right;
    root->right=tmp;
    invertTree(root->left);
    invertTree(root->right);
    return root;
}

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

suiyi_freely

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值