大模型API接口响应速度深度评测:DeepSeek、通义千问、火山豆包、腾讯元宝大比拼

一、评测背景与意义

        在大模型技术飞速发展的当下,API接口的响应速度已成为开发者选型的重要指标。本文通过严谨的测试实验,对DeepSeek、阿里通义千问、字节火山豆包、腾讯元宝四大主流模型的22个具体版本(含标准版、优化版、轻量版等)展开全面评测。通过400余次API调用实测数据,我们揭示不同模型在响应速度维度的真实表现。

        我们采用标准化测试程序,通过20次重复测试取均值,重点关注总token处理速度(tokens/s)、提示处理速度(prompt tokens/s)和补全生成速度(completion tokens/s)三个核心指标。

二、评测方案设计

2.1 测试环境配置

  • 测试工具:基于OpenAI SDK二次开发的自动化测试框架

  • 测试样本:"请讲两个笑话"

  • 测试时间:2025年3月23日

2.2 核心测试代码解析

def text_reply(content, config, model_type, stream=False, numtokens=0, syst='FGAI智能助手'):
    # 令牌动态截取算法
    while numtokens - max_prompt_tokens > 0:
        dnum = (numtokens -max_prompt_tokens) // 2 + 100
        content = content[dnum:]
    # 分块处理机制
    client = openai.OpenAI(
        api_key=api_key,
        base_url=base_url,
        timeout=request_timeout
    )
    # 多维度指标采集
    return usage.total_tokens, prompt_tokens, completion_tokens

2.3 测试参数设定

  • 重复次数:每个模型20次连续请求

  • 超时阈值:流式30秒/非流式无限制

  • 上下文管理:自动截断超长文本

2.4 评测模型清单

厂商模型分类版本标识符
阿里云通义千问Max系列qwen-max-latest
qwen-max-2025-01-25
通义千问Plus系列qwen-plus-latest
DeepSeek适配版qwen-deepseek-v3
qwen-deepseek-r1-distill-qwen-32b
qwen-deepseek-r1-distill-llama-70b
轻量级版本qwen-turbo-latest
火山引擎豆包Pro系列doubao-1-5-pro-32k-250115
doubao-1-5-pro-32k-character-250228
豆包Lite系列doubao-1-5-lite-32k-250115
DeepSeek适配版doubao-deepseek-r1-250120
doubao-deepseek-v3-241226
doubao-deepseek-r1-distill-qwen-32b-250120
腾讯云混元加速版hunyuan-turbos-latest
hunyuan-turbo-latest
标准系列hunyuan-large
hunyuan-standard
hunyuan-lite
DeepSeek融合版hunyuan-deepseek-r1
hunyuan-deepseek-v3
DeepSeek原生版本deepseek-v3
deepseek-r1

版本标识说明:

  • 日期编码:如"250115"代表2025年1月15日发布的版本

  • 参数标识:32b/70b标注模型参数量级

  • 架构标记

    • v3:第三代基础架构

    • r1:新一代优化架构

    • distill:知识蒸馏压缩版本

  • 功能标记

    • pro:专业增强版

    • lite:轻量化版本

    • turbo:快速响应版

        该清单完整覆盖四大厂商的22个主流API版本,包含基础架构、优化版本、联合开发等不同类型,确保评测结果的行业代表性。

三、评测结果分析

3.1 速度梯队分布

梯队划分速度范围(tokens/s)速度值分布模型数量
超高速阵营>7090.22(qwen-turbo)、80.53(豆包Lite)、74.74(混元Lite)3
性能优化组50-7069.56(豆包Pro字符版)、55.9(混元Standard)、51.74(通义千问DeepSeek蒸馏32B)3
主流区间30-5044.82→40.91→38.25→33.96→33.31→31.83→31.09→30.29→30.12(覆盖9个主流版本)9
待优化区域<3028.39→27.37→25.92→23.05→21.2→14.7→7.72(含腾讯混元DeepSeek系列及原生DeepSeek全系)7

3.2 厂商速度极值对比

厂商峰值模型峰值速度(t/s)谷值模型谷值速度(t/s)性能差异倍数
阿里云qwen-turbo-latest90.22qwen-deepseek-v325.923.48×
火山doubao-1-5-lite-32k80.53doubao-deepseek-r131.832.53×
腾讯hunyuan-lite74.74hunyuan-turbo-latest21.23.52×
DeepSeekdeepseek-r114.7deepseek-v37.721.90×

3.3 完整评测结果数据

[001] qwen-turbo-latest 90.22 10.93 79.29
[002] doubao-1-5-lite-32k-250115 80.53 15.62 64.91
[003] hunyuan-lite 74.74 8.14 66.6
[004] doubao-1-5-pro-32k-character-250228 69.56 11.86 57.7
[005] hunyuan-standard 55.9 6.26 49.64
[006] qwen-deepseek-r1-distill-qwen-32b 51.74 1.93 49.82
[007] doubao-1-5-pro-32k-250115 44.82 5.05 39.76
[008] hunyuan-large 40.91 5.45 35.45
[009] doubao-deepseek-r1-distill-qwen-32b-250120 38.25 2.03 36.22
[010] doubao-deepseek-v3-241226 33.96 3.2 30.75
[011] hunyuan-turbos-latest 33.31 3.08 30.23
[012] doubao-deepseek-r1-250120 31.83 1.07 30.76
[013] qwen-max-latest 31.09 5.65 25.44
[014] qwen-max-2025-01-25 30.29 5.57 24.72
[015] qwen-deepseek-r1-distill-llama-70b 30.12 1.01 29.1
[016] qwen-plus-latest 28.39 4.22 24.17
[017] hunyuan-deepseek-v3 27.37 3.47 23.9
[018] qwen-deepseek-v3 25.92 2.43 23.5
[019] hunyuan-deepseek-r1 23.05 1.14 21.91
[020] hunyuan-turbo-latest 21.2 2.74 18.46
[021] deepseek-r1 14.7 0.53 14.18
[022] deepseek-v3 7.72 0.72 7.01

四、完整评测程序

import time
import openai
import tiktoken
import configparser
import numpy as np
from tqdm import tqdm

def text_reply(content, config, model_type, stream=False, numtokens=0, syst='FGAI智能助手'):
    try:
        api_key = config.get(model_type, 'api_key')
        base_url = config.get(model_type, 'base_url')
        max_prompt_tokens = config.getint(model_type, 'max_prompt_tokens')
        if numtokens == 0:
            encoding = tiktoken.encoding_for_model(config.get('task', 'token_model'))
            tokens = encoding.encode(content)
            numtokens = len(tokens)
        while numtokens - max_prompt_tokens > 0:
            dnum = (numtokens -max_prompt_tokens) // 2 + 100
            content = content[dnum:]
            tokens = encoding.encode(content)
            numtokens = len(tokens)
        if stream:
            request_timeout = 30
        else:
            request_timeout = None
        client = openai.OpenAI(
            api_key=api_key,
            base_url=base_url,
            timeout=request_timeout         # 超时设置移至此处的客户端初始化
        )
        response = client.chat.completions.create(
            model=config.get(model_type, 'model'),
            messages=[
                {'role': 'system', 'content': syst},
                {'role': 'user', 'content': content}
            ],
            temperature=config.getfloat(model_type, 'temperature'),
            max_tokens=config.getint(model_type, 'max_tokens')-numtokens,
            top_p=config.getint(model_type, 'top_p'),
            frequency_penalty=config.getfloat(model_type, 'frequency_penalty'),
            presence_penalty=config.getfloat(model_type, 'presence_penalty'),
            stream=stream
        )
    except Exception as e:
        print(str(e))
        return False, 0, 0, 0, ''
    if stream:
        return True, 0, 0, 0, response
    print(response.usage)
    return True, response.usage.total_tokens, response.usage.prompt_tokens, response.usage.completion_tokens, response.choices[0].message.content

def test_time(model_type, config, content, repeat_times=20):
    print(config.get(model_type, 'model'), config.get(model_type, 'api_key'))
    t_tot = 0.0
    t_prp = 0.0
    t_cpl = 0.0
    for i in tqdm(range(repeat_times)):
        t0 = time.time()
        flag, num_tot, num_prp, num_cpl, resp = text_reply(content, config, model_type, stream=False, numtokens=0, syst='FGAI智能>助手')
        t1 = time.time() - t0
        t_tot = t_tot + float(num_tot) / t1
        t_prp = t_prp + float(num_prp) / t1
        t_cpl = t_cpl + float(num_cpl) / t1
    t_avg_tot = round(t_tot / repeat_times, 2)
    t_avg_prp = round(t_prp / repeat_times, 2)
    t_avg_cpl = round(t_cpl / repeat_times, 2)
    return t_avg_tot, t_avg_prp, t_avg_cpl




if __name__ == "__main__":
    cfg_path = 'cfg_llm.ini'
    config = configparser.ConfigParser()
    config.read(cfg_path, encoding='utf8')
    content = '请讲两个笑话。'
    model_types = ['qwen-max-latest', 'qwen-max-2025-01-25', 'qwen-plus-latest', 'qwen-deepseek-v3', 'qwen-deepseek-r1-distill-qwen-32b', 'qwen-deepseek-r1-distill-llama-70b', 'qwen-turbo-latest', 'doubao-1-5-pro-32k-250115', 'doubao-1-5-pro-32k-character-250228', 'doubao-1-5-lite-32k-250115', 'doubao-deepseek-r1-250120', 'doubao-deepseek-v3-241226', 'doubao-deepseek-r1-distill-qwen-32b-250120', 'hunyuan-turbos-latest', 'hunyuan-turbo-latest', 'hunyuan-large', 'hunyuan-standard', 'hunyuan-lite', 'hunyuan-deepseek-r1', 'hunyuan-deepseek-v3', 'deepseek-v3', 'deepseek-r1']
    print(len(model_types))
    t_avg_tots = []
    t_avg_prps = []
    t_avg_cpls = []
    for model_type in model_types[:]:
        t_avg_tot, t_avg_prp, t_avg_cpl = test_time(model_type, config, content, repeat_times=20)
        t_avg_tots.append(t_avg_tot)
        t_avg_prps.append(t_avg_prp)
        t_avg_cpls.append(t_avg_cpl)
        print(config.get(model_type, 'model'), t_avg_tot)
    print('t_avg_tots: ', t_avg_tots)
    print('t_avg_prps: ', t_avg_prps)
    print('t_avg_cpls: ', t_avg_cpls)
    results = []
    ids =  np.argsort(t_avg_tots)[::-1]
    for i, mid in enumerate(ids):
        result = f'[{(i+1):03d}] {model_types[mid]} {t_avg_tots[mid]} {t_avg_prps[mid]} {t_avg_cpls[mid]}\n'
        print(result)
        results.append(result)
    # with open('t_avg_tot.txt', 'w', encoding='utf8') as f:
    #     f.writelines(results)

五、总结

        在当前大模型技术快速发展的背景下,API响应速度已成为开发者选择模型的重要参考因素。本文通过对 DeepSeek阿里通义千问字节火山豆包腾讯元宝 四大主流模型的 22个具体版本,从 总token处理速度提示处理速度补全生成速度 三个核心指标展开评测,涉及 400余次API调用 实验,以揭示不同模型在响应速度上的真实表现。测试采用标准化程序,取20次重复测试均值,确保结果的可靠性与科学性。需要强调的是,本次评测目前仅对 速度 进行了对比,而模型的实际选型还应综合考虑 准确性、稳定性、功能适配性等性能,后续我们将逐步补充相关评测内容。

        此外,本评测将持续更新,欢迎大家留言提出关心的模型或版本,以便在未来的评测中纳入分析范围。本次评测结果来源于FGAI(FGAI 人工智能平台https://www.botaigc.cn/,可将DeepSeek大模型与知识库直接接入微信公众号。速度在该场景下至关重要,这是因为公众号官方规定响应时间限制在5秒内,且仅3次重试机会,及总时间不超过15秒。

### 比较DeepSeek和Qwen AI的功能与能力 #### 功能特性对比 DeepSeek 和 Qwen 是两款先进的大型语言模型,各自具备独特的功能特点。 对于 DeepSeek 而言,这款由阿里云开发的大规模预训练模型,在自然语言理解方面表现出色。它能够处理复杂的查询请求并提供精准的回答[^1]。此外,DeepSeek 支持多模态输入输出,可以解析图像、音频等多种形式的数据,并给出相应的反馈。 相比之下,Qwen 同样出自阿里云之手,是一款基于Transformer架构设计的语言生成型AI助手。除了强大的文本生成功能外,Qwen 还特别擅长代码编写辅助工作。通过集成CodeLlama等工具链,Qwen 可以为开发者们带来高效的编程体验。 #### 技术实现差异 在技术层面上,两者均采用了最新的深度学习算法来提升性能表现。然而具体到细节上: - DeepSeek 更加注重于跨领域知识图谱构建以及语义表示的学习;这使得其能够在更广泛的任务场景下发挥优势; - Qwen 则聚焦于对话系统的优化和完善,尤其是在长期记忆管理机制方面的创新让连续交互更加流畅自然。 #### 应用场景适用性 当涉及到实际应用时,选择哪款产品取决于具体的业务需求和个人偏好: - 如果项目涉及多媒体内容分析或是需要一个全能型的知识检索平台,则 DeepSeek 或许会是一个更好的选项; - 对于那些希望获得一位聪明伶俐的聊天伙伴或者是寻求高效便捷的编码支持而言,Qwen 显得更为合适一些。 ```python # 示例:使用Qwen进行简单的Python代码补全 from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "qwen" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "def bubble_sort(arr):" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coding的叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值