本文为《React Agent:从零开始构建 AI 智能体》专栏系列文章。 专栏地址:https://blog.csdn.net/suiyingy/category_12933485.html。项目地址:https://gitee.com/fgai/react-agent(含完整代码示例与实战源)。完整介绍:https://blog.csdn.net/suiyingy/article/details/146983582。
智能体(Agent)是计算机科学和人工智能领域的一个核心概念,指的是一种能够感知其环境并根据感知做出行动的实体。其核心目标是通过行动来影响环境,从而完成预定目标。在科技飞速发展的当下,它作为人工智能领域的关键概念,正逐渐崭露头角,深刻影响着我们生活与工作的方方面面。从智能家居系统根据环境自动调节设备,到工业生产中智能机器人的精准操作,再到金融领域智能投资顾问的策略制定,智能体的身影无处不在,它已然成为推动各行业智能化变革的核心力量。
智能体概念的起源可追溯到 20 世纪 70 年代。当时,人工智能领域正处于蓬勃发展阶段,研究者们开始尝试构建能够模拟人类智能行为的系统。早期的智能体模型相对简单,主要侧重于解决特定领域的问题,例如在专家系统中,智能体利用预先设定的规则和知识库来处理特定领域的知识,为用户提供决策支持。
图1 简易医疗诊断专家系统
随着时间的推移,计算机技术、网络技术以及人工智能算法的不断进步,智能体的概念得到了极大的丰富和拓展。到了 20 世纪 80 年代末至 90 年代初,分布式人工智能兴起,多智能体系统成为研究热点。在多智能体系统中,多个智能体通过网络相互连接,它们能够在不同的物理位置或虚拟空间中协同工作,共同解决复杂问题,这使得智能体的应用场景得到了极大的扩展。例如,在分布式机器人系统中,多个机器人智能体通过协作完成诸如搜索与救援、工业生产流水线作业等复杂任务。
进入 21 世纪,随着大数据、云计算、机器学习和深度学习等技术的飞速发展,智能体迎来了新的发展机遇。机器学习技术使得智能体能够从大量的数据中学习模式和规律,从而不断优化自身的行为策略;深度学习的出现更是让智能体在感知和理解复杂环境方面取得了重大突破,例如在图像识别、语音识别等领域,智能体借助深度学习模型能够达到极高的准确率。
自 2018 年以来,大模型技术的异军突起,更是为智能体的发展注入了强大动力。以 Transformer 架构为核心的大型预训练模型(如 GPT、BERT)显著提升了智能体在自然语言理解、图像识别和多模态交互中的能力。它基于海量数据训练,具备强大的语言理解、生成和复杂任务处理能力,为智能体提供了更加智能的“大脑”。以大模型为智能底座的智能体,在规划决策方面,于复杂环境中为实现特定目标制定最优行动策略的能力显著提升,在任务解析、思维链推理、自我反思和回顾链微调等方面展现出前所未有的强大实力。在工具调用上,大模型加持下的智能体与外部环境、资源互动更为高效,能更好地借助外部能力弥补自身不足。长期记忆方面,智能体得以更精准地模拟人类记忆机制,积累的历史交互、执行经验更加丰富,对逻辑推理与任务规划的支撑作用愈发关键。在任务执行环节,智能体将决策转化为具体行动时更加流畅,通过流程自动化技术和各类外部工具,能够更加高效地执行各类具体任务并完成既定目标。
图2 智能体发展
大模型驱动的智能体技术不断更新迭代,产学研用各方均期望借助智能体突破当前发展瓶颈。在多智能体系统中,基于大模型的智能体之间协作更加紧密和智能,它们能够更高效地进行任务分配与协同,共同攻克更为复杂棘手的难题,如在智能交通管理中,多个智能体协同对交通流量数据进行分析,动态调整信号灯时间,缓解拥堵;在智慧城市建设里,不同功能的智能体联合运作,优化城市资源调配、提升公共服务水平。
大模型还在多智能体系统中扮演知识共享的枢纽角色,通过统一的语言接口提升智能体间的协作效率。虽然大模型的应用带来了资源消耗和伦理安全等新挑战,但其技术潜力无疑为智能体的发展开辟了广阔的前景,加速了智能化社会的建设步伐。大模型的开源化和 API 接口服务的普及(如 OpenAI 通义千问、豆包、腾讯元宝等)降低了开发者使用人工智能技术的门槛。智能体技术不再局限于研究机构或大型企业,更多的中小型企业和个人开发者也可以轻松构建和部署基于大模型的智能体,从而推动技术普及和商业化落地。
如今,智能体已广泛应用于众多领域,从智能交通、智慧城市、智能制造到医疗健康、金融服务、教育娱乐等,成为推动社会智能化发展的重要驱动力。在医疗健康领域,智能体借助大模型分析海量病历数据和医学影像,辅助医生进行更精准的疾病诊断,还能通过模拟生物体内化学反应,加速药物研发进程;金融服务方面,基于大模型的智能体可实时分析金融市场数据,进行精准风险评估、信用评估,提供个性化智能投顾服务;教育娱乐领域,智能体化身智能教学助手,根据学生学习情况提供个性化学习方案,在娱乐场景中,能依据用户偏好生成定制化娱乐内容。大模型与智能体的深度融合,正持续拓展智能体的应用边界,为各行业带来更多创新变革的可能。
智能体可以是一个软件程序,运行在计算机系统中,通过代码逻辑来感知数字环境中的数据变化并作出反应;也可以是一个物理实体,比如智能机器人,配备了各种传感器用于感知外部物理世界的信息,如视觉传感器感知周围物体的形状与位置,触觉传感器感知接触力的大小等,同时拥有执行器来完成相应动作,如移动、抓取物品等。其行为通常由一套算法驱动,这些算法可以是规则驱动的、基于学习的,或者是两者的结合。
图3 软硬件智能体
一个典型智能体可以用“感知 - 决策 - 执行”(Perception-Decision-Action,PDA)循环来描述。这种循环不仅适用于简单的程序化任务,还适用于复杂的动态环境,比如自动驾驶车辆或游戏中的智能对手。
(1)感知:通过传感器或其他输入获取外部环境信息。
(2)决策:基于感知的信息,通过逻辑或学习机制生成响应策略。
(3)执行:通过效应器与环境交互,执行具体操作。
图4 感知 - 决策 - 执行
在学术层面,智能体的定义更为严谨。它通常被描述为一个具有自主性、适应性、主动性、社会性、持续性与学习性等特性的计算实体。自主性意味着智能体能够在没有外界直接干预的情况下,独立地决定自身的行为和动作;适应性体现为智能体能够及时感知环境变化,并迅速做出与之对应的响应;主动性表明智能体不仅仅是被动地对环境刺激做出反应,还能够主动地采取行动以实现自身目标;社会性则强调在多智能体系统中,各个智能体之间能够相互通信、协作与竞争,共同完成复杂任务;持续性表明智能体是一个长期运行的系统,它能够在长期任务执行中保持状态和信息的连贯性;学习性突出智能体能够从自身的经验以及与环境的交互过程中学习新知识和技能,不断改进自身的行为策略和决策模型。下面分别介绍智能体的这些特点。
图5 智能体特性
(1)自主性
自主性是智能体最为显著的特点之一。智能体拥有自己的内部状态和行为决策机制,能够在没有外部明确指令的情况下,基于自身对环境的感知和已有的知识经验,自主地决定执行何种行动。例如,智能家居中的智能温控系统,它通过温度传感器实时感知室内温度,当温度偏离用户设定的舒适范围时,智能体能够自主判断并决定是否开启空调或暖气设备,以及调节设备的运行功率和温度设定值,无需用户手动操作。这种自主性使得智能体能够在复杂多变的环境中灵活应对,及时处理各种情况,极大地提高了系统的运行效率和用户体验。
(2)适应性
适应性是指智能体在面对未知或变化的环境时,能够调整自己的行为。例如,通过强化学习算法,智能体可以逐步改进其策略,以更好地适应环境。它能够通过各种传感器获取环境中的信息,如视觉、听觉、触觉、温度、湿度等信息,并在极短的时间内对这些信息进行分析和处理,从而做出相应的反应。以自动驾驶汽车为例,汽车上配备了大量的传感器,包括摄像头、雷达、激光雷达等,这些传感器实时感知车辆周围的道路状况、交通信号、其他车辆和行人的位置与运动状态等信息。当智能体检测到前方车辆突然刹车时,它能够迅速做出反应,立即启动刹车系统,以避免碰撞事故的发生。智能体的反应性确保了其在动态环境中能够安全、稳定地运行,为实现各种复杂任务提供了保障。
(3)主动性
智能体并非仅仅被动地对环境刺激做出反应,它还具有主动探索和积极行动的能力。智能体能够根据自身的目标和任务,主动地采取行动来改变环境或获取更多的信息。例如,在智能物流仓储系统中,物流机器人智能体能够根据订单信息和仓库货物存储布局,主动规划最优的路径前往目标货物存放位置,完成货物的搬运和分拣工作。而且,它还会主动与其他物流设备智能体进行协作,如与输送线智能体配合,将货物准确地输送到指定的发货区域。智能体的主动性使得系统能够更加高效地运行,主动适应不断变化的业务需求,提升整体的生产效率和服务质量。
(4)社会性
某些智能体可以与其他智能体或人类协作,以完成任务。比如多智能体系统中,多个智能体协作完成复杂的目标任务。在多智能体系统中,智能体之间具有社会性,它们能够相互通信、协作与竞争。智能体通过特定的通信协议和语言,与其他智能体交换信息,共享知识和资源,共同完成复杂的任务。例如,在城市交通管理系统中,交通信号灯智能体、车辆智能体和道路监控智能体之间相互协作。交通信号灯智能体根据车辆智能体反馈的实时交通流量信息,动态调整信号灯的时长,以优化路口的交通通行效率;车辆智能体之间也可以通过车联网技术进行通信,实现协同驾驶,如在高速公路上进行编队行驶,减少空气阻力,提高燃油经济性。同时,在一些场景下,智能体之间也存在竞争关系,例如在资源有限的情况下,多个智能体可能会竞争获取有限的资源,通过竞争促使智能体不断优化自身的策略和性能,以在竞争中取得优势。智能体的社会性使得大规模复杂系统的构建和运行成为可能,充分发挥了群体智能的优势,为解决各种复杂的现实问题提供了新的思路和方法。
(5)持续性
智能体是一个长期运行的系统,它能够在长期的任务执行中保持状态和信息的连贯性。以智能客服系统为例,在为用户提供服务的过程中,智能体需要处理大量用户的咨询和反馈。它会持续记录每个用户的历史咨询记录、问题类型、偏好以及解决方案等信息。当用户再次咨询时,智能体可以根据之前积累的这些状态和信息,快速准确地理解用户的问题,并基于之前的处理经验,提供更符合用户需求的解决方案。而且,在长时间的运行过程中,智能体还会不断学习和更新知识,以适应不断变化的用户需求和业务场景。再比如工业生产线上的智能体,它会持续监控设备的运行状态、生产进度、产品质量等信息。在长期的生产过程中,根据这些状态和信息的连贯性,智能体能够及时发现设备的潜在故障,提前进行预警和维护,保证生产线的稳定运行,避免因设备故障导致的生产中断。这种持续性使得智能体能够在复杂的任务环境中不断积累经验,逐步优化自身的行为和决策,提高系统的可靠性和稳定性。
(6)学习性
智能体具备强大的学习能力,它能够从自身的经验以及与环境的交互过程中学习新知识和技能,不断改进自身的行为策略和决策模型。通过机器学习算法,智能体可以对大量的数据进行分析和挖掘,发现其中的模式和规律,从而实现自我优化。例如,智能语音助手在与用户的长期交互过程中,能够学习用户的语言习惯、偏好和需求,逐渐提高语音识别的准确率和语义理解的能力,为用户提供更加个性化和精准的服务。而且,随着技术的不断发展,智能体还具有进化能力,它能够适应不断变化的环境和任务需求,通过更新自身的算法、模型和知识体系,实现功能和性能的升级。例如,在面对新出现的病毒或恶意软件时,网络安全智能体能够通过学习新的特征和行为模式,进化出相应的防御策略,保障网络系统的安全。智能体的学习与进化能力使其具有更强的适应性和灵活性,能够在不断变化的世界中持续发挥作用,为人类创造更多的价值。
立即关注获取最新动态
点击订阅《React Agent 开发专栏》,每周获取智能体开发深度教程。项目代码持续更新至React Agent 开源仓库,欢迎 Star 获取实时更新通知!