模型构造(层和块)

层和块

块可以描述单个层、由多个层组成的组件或整个模型本身。使用块进行抽象的一个好处是可以将一些块组合成更大的组件,这一过程通常是递归的。这一点在 图5.1.1 中进行了说明。通过定义代码来按需生成任意复杂度的块,我们可以通过简洁的代码实现复杂的神经网络。

在这里插入图片描述从编程的角度来看,块由类(class)表示。它的任何子类都必须定义一个将其输入转换为输出的正向传播函数,并且必须存储任何必需的参数。注意,有些块不需要任何参数。最后,为了计算梯度,块必须具有反向传播函数。幸运的是,在定义我们自己的块时,由于自动微分提供了一些后端实现,我们只需要考虑正向传播函数和必需的参数。

首先,我们回顾一下多层感知机的代码。下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接的隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接的输出层。

import torch
from torch import nn
from torch.nn import functional as F 

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型,层的执行顺序是作为参数传递的。简而言之,nn.Sequential定义了一种特殊的Module,即在PyTorch中表示一个块的类。它维护了一个由Module组成的有序列表,注意,两个全连接层都是Linear类的实例,Linear类本身就是Module的子类。正向传播(forward)函数也非常简单:它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。net(X)实际上是net.call(X)的简写。

(1) 自定义块

块是如何工作的,自己实现一个块。每个块必须提供的基本功能:

    1 将输入数据作为其正向传播函数的参数。

    2 通过正向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收任意维的输入,但是返回一个维度256的输出。

    3 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。

    4 存储和访问正向传播计算所需的参数。

    5 根据需要初始化模型参数。

从零开始编写一个块。它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。下面的MLP类继承了表示块的类(nn.Module)。我们的实现将严重依赖父类,只需要提供我们自己的构造函数(Python中的__init__函数)和正向传播函数。

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用`MLP`的父类`Block`的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数`params`(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的正向传播,即如何根据输入`X`返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

首先关注正向传播函数。注意,它以X作为输入,计算带有激活函数的隐藏表示,并输出其未归一化的输出值。在这个MLP实现中,两个层都是实例变量。为什么是合理的,可以想象实例化两个多层感知机(net1和net2),并根据不同的数据对它们进行训练。希望它们学到两种不同的模型。
我们在构造函数中实例化多层感知机的层,然后在每次调用正向传播函数时调用这些层。注意一些关键细节。首先,我们定制的__init__函数通过super().init()调用父类的__init__函数,省去了重复编写适用于大多数块的模版代码的痛苦。然后我们实例化两个全连接层,分别为self.hidden和self.out。注意,除非我们实现一个新的运算符,否则我们不必担心反向传播函数或参数初始化,系统将自动生成这些。让我们试一下。

(2) 顺序块

Sequential的设计是为了把其他模块串起来。为了构建我们自己的简化的MySequential,我们只需要定义两个关键函数: 1. 一种将块逐个追加到列表中的函数。 2. 一种正向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

下面的MySequential类提供了与默认Sequential类相同的功能。

class MySequential(nn.Module):
    def __init__(self, *args): #这种写法代表这个方法接受任意个数的参数如果是没有指定key的参数以list形式放在args变量里面。有指定key的参数会以dict的形式放在kwargs变量里面
        super().__init__()
        for block in args:
            # 这里,`block`是`Module`子类的一个实例。我们把它保存在'Module'类的成员变量
            # `_modules` 中。`block`的类型是OrderedDict。
            self._modules[block] = block

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

在__init__方法中,我们将每个块逐个添加到有序字典_modules中。简而言之,_modules的主要优点是,在块的参数初始化过程中,系统知道在_modules字典中查找需要初始化参数的子块。当MySequential的正向传播函数被调用时,每个添加的块都按照它们被添加的顺序执行。现在可以使用我们的MySequential类重新实现多层感知机。

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

(3) 在正向传播函数中执行代码

Sequential类使模型构造变得简单,允许我们组合新的结构,而不必定义自己的类。然而,并不是所有的架构都是简单的顺序结构。当需要更大的灵活性时,我们需要定义自己的块。例如,我们可能希望在正向传播函数中执行Python的控制流。此外,我们可能希望执行任意的数学运算,而不是简单地依赖预定义的神经网络层。我们网络中的所有操作都对网络的激活值及网络的参数起作用。然而,有时我们可能希望合并既不是上一层的结果也不是可更新参数的项。我们称之为常数参数(constant parameters)因此我们实现了一个FixedHiddenMLP类,如下所示。

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变。
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及`relu`和`dot`函数。
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数。
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

在这个FixedHiddenMLP模型中,我们实现了一个隐藏层,其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。这个权重不是一个模型参数,因此它永远不会被反向传播更新。然后,网络将这个固定层的输出通过一个全连接层。
运行了一个while循环,在 L1 范数大于 1 的条件下,将输出向量除以 2 ,直到它满足条件为止。最后返回了X中所有项的和。没有标准的神经网络执行这种操作。此特定操作在任何实际任务中可能都没有用处。只是展示如何将任意代码集成到神经网络计算的流程中。

net = FixedHiddenMLP()
net(X)

我们可以混合搭配各种组合块的方法。在下面的例子中,我们以一些想到的方法嵌套块

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

总结

    层也是块。

    一个块可以由许多层组成。

    一个块可以由许多块组成。

    块可以包含代码。

    块负责大量的内部处理,包括参数初始化和反向传播。

    层和块的顺序连接由Sequential块处理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值