图像卷积操作

图像卷积

1 互相关运算

严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是 互相关运算 (cross-correlation),而不是卷积运算。 在卷积层中,输入张量和核张量通过互相关运算产生输出张量。首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示。在下图中,输入是高度为 3 、宽度为 3 的二维张量(即形状为 3×3 )。卷积核的高度和宽度都是 2 ,而卷积核窗口(或卷积窗口)的形状由内核的高度和宽度决定(即 2×2 )。

import torch
from torch import nn
from d2l import torch as d2l


def corr2d(X, K):  #@save
    """计算二维互相关运算。"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

在这里插入图片描述

2 卷积层
卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。 所以,卷积层中的两个被训练的参数是卷积核权重和标量偏置。 就像我们之前随机初始化全连接层一样,在训练基于卷积层的模型时,我们也随机初始化卷积核权重。基于上面定义的 corr2d 函数实现二维卷积层。在 init 构造函数中,将 weight 和 bias 声明为两个模型参数。前向传播函数调用 corr2d 函数并添加偏置。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

3 图像中目标的边缘检测
如下是卷积层的一个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。 首先,我们构造一个 6×8 像素的黑白图像。中间四列为黑色( 0 ),其余像素为白色( 1 )。

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

接下来,我们构造一个高度为 1 、宽度为 2 的卷积核 K 。当进行互相关运算时,如果水平相邻的两元素相同,则输出为零,否则输出为非零。

K = torch.tensor([[1.0, -1.0]])

现在,我们对参数 X (输入)和 K (卷积核)执行互相关运算。 如下所示,输出Y中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘,其他情况的输出为 0 。

Y = corr2d(X, K)
Y

tensor([[ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.],
        [ 0.,  1.,  0.,  0.,  0., -1.,  0.]])

现在我们将输入的二维图像转置,再进行如上的互相关运算。 其输出如下,之前检测到的垂直边缘消失了。 不出所料,这个卷积核K只可以检测垂直边缘,无法检测水平边缘。

corr2d(X.t(), K)

tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])

4 学习卷积核

如果我们只需寻找黑白边缘,那么以上 [1, -1] 的边缘检测器足以。然而,当有了更复杂数值的卷积核,或者连续的卷积层时,我们不可能手动设计过滤器。那么我们是否可以学习由X生成Y的卷积核呢?现在让我们看看是否可以通过仅查看“输入-输出”对来学习由 X 生成 Y 的卷积核。 我们先构造一个卷积层,并将其卷积核初始化为随机张量。接下来,在每次迭代中,我们比较 Y 与卷积层输出的平方误差,然后计算梯度来更新卷积核。为了简单起见,我们在此使用内置的二维卷积层,并忽略偏置。

# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)

# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))

for i in range(10):
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2
    conv2d.zero_grad()
    l.sum().backward()
    # 迭代卷积核
    conv2d.weight.data[:] -= 3e-2 * conv2d.weight.grad
    if (i + 1) % 2 == 0:
        print(f'batch {i+1}, loss {l.sum():.3f}')
batch 2, loss 9.103
batch 4, loss 1.762
batch 6, loss 0.392
batch 8, loss 0.105
batch 10, loss 0.034

在 10 次迭代之后,误差已经降到足够低。现在我们来看看我们所学的卷积核的权重张量。

conv2d.weight.data.reshape((1, 2))

tensor([[ 0.9681, -1.0023]])

总结

二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。

我们可以设计一个卷积核来检测图像的边缘。

我们可以从数据中学习卷积核的参数。

学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。

当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网络。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值