CINTA作业八:CRT

中国剩余定理

提示:该定理可高效地求解一元同余方程组



一、习题10.1

在这里插入图片描述

解: ∵ \because 221 = 13 x 17

  由 CRT 可将该式子转换成一元同余方程组:

     x ≡ \equiv 200 0 2019 2000^{2019} 20002019 (mod 17)
     x ≡ \equiv 200 0 2019 2000^{2019} 20002019 (mod 13)

  由费尔马小定理,可将以上方程简化为:

     x ≡ \equiv 200 0 3 2000^{3} 20003 (mod 17) ≡ \equiv 1 1 3 11^{3} 113 (mod 17)
     x ≡ \equiv 200 0 3 2000^{3} 20003 (mod 13) ≡ \equiv 1 1 3 11^{3} 113 (mod 13)

  计算后可得:
     x ≡ \equiv 5 (mod 17)
     x ≡ \equiv 3 (mod 13)

  令 a = 5, b = 3, p = 17, q = 13, n = pq = 221

  通过 egcd 算法可得, p − 1 p^{-1} p1 = 10, q − 1 q^{-1} q1 = 4 4 4

  令 y ≡ \equiv a q q − 1 aqq^{-1} aqq1 + b p p − 1 bpp^{-1} bpp1 (mod n)

  代入数据后解得, y = 5

   所以原式的解为 5


二、习题10.2

在这里插入图片描述

解:记 a = 8, b = 3, p = 11, q = 19, n = pq = 209

  通过 egcd 算法可得, p − 1 p^{-1} p1 = 7, q − 1 q^{-1} q1 = 7

  令 y ≡ \equiv a q q − 1 aqq^{-1} aqq1 + b p p − 1 bpp^{-1} bpp1 (mod n)

  代入数据后解得, y = 41

  验证可知,y 是正确解


三、习题10.3

在这里插入图片描述

解:令 M M M = m 0 m 1 . . . m n − 1 m_0m_1...m_{n-1} m0m1...mn1 = 5 ∗ 7 ∗ 9 ∗ 11 5*7*9*11 57911 = 3465

  记 b i b_i bi = M m i M \over m_{i} miM b i − 1 b_i^{-1} bi1 为 mod 5 下的逆元。则有:

      x x x = ∑ i = 0 n − 1 a i b i b i − 1 \sum_{i=0}^{n-1} a_ib_ib_i^{-1} i=0n1aibibi1 (mod M M M)

   x 0 x_0 x0 = 1 ∗ ( 7 ∗ 9 ∗ 11 ) ∗ ( 7 ∗ 9 ∗ 11 ) − 1 1*(7*9*11)*(7*9*11)^{−1} 1(7911)(7911)1 = 1 ∗ 693 ∗ 2 1*693*2 16932

   x 1 x_1 x1 = 2 ∗ ( 5 ∗ 9 ∗ 11 ) ∗ ( 5 ∗ 9 ∗ 11 ) − 1 2*(5*9*11)*(5*9*11)^{−1} 2(5911)(5911)1 = 1 ∗ 495 ∗ 3 1*495*3 14953

   x 2 x_2 x2 = 3 ∗ ( 5 ∗ 7 ∗ 11 ) ∗ ( 5 ∗ 7 ∗ 11 ) − 1 3*(5*7*11)*(5*7*11)^{−1} 3(5711)(5711)1 = 1 ∗ 385 ∗ 4 1*385*4 13854

   x 3 x_3 x3 = 4 ∗ ( 5 ∗ 7 ∗ 9 ) ∗ ( 5 ∗ 7 ∗ 9 ) − 1 4*(5*7*9)*(5*7*9)^{−1} 4(579)(579)1 = 1 ∗ 315 ∗ 8 1*315*8 13158

   ∴ \therefore x x x = ( x 0 + x 1 + x 2 + x 3 x_0+x_1+x_2+x_3 x0+x1+x2+x3) mod M M M = 1731


四、习题10.4

在这里插入图片描述

解:根据同余的性质可得,

   ∃ \exists k 1 , k 2 ∈ k_1,k_2 \in k1,k2 Z \mathbb{Z} Z ,使得

      x x x = k 1 m + a k_1m + a k1m+a
      x x x = k 2 n + a k_2n + a k2n+a

  两式相减得, k 1 m = k 2 n k_1m = k_2n k1m=k2n

  又因为 m m m n n n 是互素的正整数

  则必然存在 r 1 , r 2 ∈ r_1,r_2 \in r1,r2 Z \mathbb{Z} Z ,使得

      k 1 k_1 k1 = r 1 n r_1n r1n
      k 2 k_2 k2 = r 2 m r_2m r2m

  代入以上关于 x x x 的方程组可得,

      x x x = r 1 n m + a r_1nm + a r1nm+a
      x x x = r 2 m n + a r_2mn + a r2mn+a

  所以, x x x mod m n mn mn = a a a


五、习题10.5

在这里插入图片描述

解: ∵ \because p 和 q 是不同的两个素数

  由费尔马小定理得,

     p q − 1 p^{q-1} pq1 ≡ \equiv 1 (mod q)
     q p − 1 q^{p-1} qp1 ≡ \equiv 1 (mod p)

  又 ∵ \because p q − 1 p^{q-1} pq1 q p − 1 q^{p-1} qp1 分别是 p,q 的倍数,则

     p q − 1 p^{q-1} pq1 ≡ \equiv 0 (mod p)
     q p − 1 q^{p-1} qp1 ≡ \equiv 0 (mod q)

  两式相加得,

     p q − 1 p^{q-1} pq1 + q p − 1 q^{p-1} qp1 ≡ \equiv 1 (mod q)
     p q − 1 p^{q-1} pq1 + q p − 1 q^{p-1} qp1 ≡ \equiv 1 (mod p)

  由习题 10.4 的结论可知, p q − 1 p^{q-1} pq1 + q p − 1 q^{p-1} qp1 ≡ \equiv 1 (mod pq)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值