[ArcGIS] 焦点统计应用 提取山顶点 地形起伏度

工具:[ArcToolbox]–>[Spatial Analyst 工具]–>[邻域分析]–>[焦点统计]

这里写图片描述

统计类型介绍应用
MEAN计算邻域内像元的平均值
MAJORITY计算邻域内像元的众数(出现次数最多的值)
MAXIMUM计算邻域内像元的最大值提取山顶点
MEDIAN计算邻域内像元的中值
MINIMUM计算邻域内像元的最小值
MINORITY计算邻域内像元的少数(出现次数最少的值)
RANGE计算邻域内像元的范围(最大值和最小值之差)地形起伏度
STD计算邻域内像元的标准差
SUM计算邻域内像元的总和(所有值的总和)
VARIETY计算邻域内像元的变异度(唯一值的数量)

提取山顶点

统计类型:MAXIMUM

这里写图片描述
思路:

  1. 使用dem数据统计出最大值点maxpoint
  2. 计算dem-maxpoint==0即可得到山顶点
  3. 栅格转矢量可提取山顶点

例子:http://blog.csdn.net/BigSun1993/article/details/50495827

地形起伏度

统计类型:RANGE
计算邻域内像元的范围(最大值和最小值之差)

这里写图片描述

### 使用ArcGIS计算和显示地形起伏 #### 创建地理数据库并准备环境 为了便于管理和存储处理后的数据,在特定文件夹中新建一个地理数据库用于存放结果。确保该地理数据库的位置方便访问,并且有足够的空间来保存即将生成的数据集。 #### 准备DEM数据 确保已经拥有高质量的数字高程模型(Digital Elevation Model, DEM)数据,这是后续所有分析的基础。对于重庆市的研究区而言,应获取覆盖整个研究区域的DEM数据[^2]。 #### 利用邻域统计工具计算地形起伏 通过ArcToolbox中的`Spatial Analyst Tools -> Neighborhood - **输入栅格层**:选择之前准备好的DEM数据作为输入源。 - **邻域形状**:定义要应用于每个像元周围区域的形状;通常可以选择圆形或矩形窗口。 - **统计数据类型**:选择`Range`选项,这会自动计算指定邻域内的最大值与最小值之间的差异,即代表了局部地区的地形起伏[^3]。 执行上述命令后即可获得反映不同位置之间高变化情况的地图——这就是所谓的“地形起伏”。 #### 结果可视化 完成计算之后,可以进一步调整颜色方案和其他符号化属性以便更好地展示所得出的信息。例如,采用渐变色彩映射方法能够直观地区分高低起伏明显的地带以及相对平坦之处。 ```python import arcpy from arcpy.sa import * arcpy.CheckOutExtension("Spatial") # 设置工作空间 workspace = r"C:\path\to\your\geodatabase.gdb" arcpy.env.workspace = workspace # 输入DEM数据路径 dem_raster = Raster(r"path_to_dem.tif") # 定义邻域大小 (此处假设为3*3矩阵) neighborhood = NbrRectangle(3, 3) # 应用FocalStatistics函数计算RANGE terrain_roughness = FocalStatistics(dem_raster, neighborhood, "RANGE") # 输出结果至当前工作空间下的新栅格文件 output_path = os.path.join(workspace, "TerrainRoughness") terrain_roughness.save(output_path) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

geodoer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值