精确率(准确率、查准率、precision)、召回率(查全率、recall)、RoC曲线、AUC面积、PR曲线

本文介绍了精确率(precision)、召回率(recall)的概念,以及它们在分类任务中的作用。此外,详细阐述了RoC曲线和PR曲线,强调了AUC面积在衡量模型性能中的重要性,指出在P-R曲线和RoC曲线中,更高的面积代表模型更优。
摘要由CSDN通过智能技术生成

1. TP, FP, TN, FN

    1. True Positives,TP:预测为正样本,实际也为正样本的特征数
    2. False Positives,FP:预测为正样本,实际为负样本的特征数
    3. True Negatives,TN:预测为负样本,实际也为负样本的特征数
    4. False Negatives,FN:预测为负样本,实际为正样本的特征

真实情况

预测结果

TP(真正例)

FN(假反例)

FP(假正例)

TN(真反例)


2. 精确率(precision),召回率(Recall)与特异性(specificity)

  精确率(Precision)的定义如下:

     P=TPTP+FP

    召回率(Recall)的定义如下:
     R=TPT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值