class Solution {
//for each element in matrix, we compute h[j](current consecutive length of '1'), L[j] (nearest left wall whose height is smaller than current column), and R[j] (nearest right wall whose height is smaller than current column) for it, update these three terms row by row
//here we compute the most far range(both in height, and width) of scan line j at every row i
//to get the size of the rectangle of f[i][j]. To achieve this, we should compute:
//H[j](the maximum bottom up height of current column until meet the first '0')
//L[j](the most far position where can the scan line j can go at the left)
//R[j](the most far position where can the scan line j can go at the right)
//then f[i][j]=H[j]*(R[j]-L[j]+1), ans=max(ans,f[i][j])
public:
int maximalRectangle(vector<vector<char> > &matrix) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int ans = 0;
if(matrix.size() == 0) return ans;
int m = matrix[0].size();
vector<int>L(m, -1);
vector<int>R(m, m);
vector<int>H(m, 0);
for (int i = 0; i < matrix.size(); ++i)
{
//scan from left to right to update H and L
int nearestLeft = -1;//virtual '0' at most far of right
for (int j = 0; j < matrix[i].size(); ++j)
{
L[j] = max(nearestLeft, L[j]);
if (matrix[i][j] == '1')
H[j]++;
else
{
H[j] = 0;
L[j] = -1;//note here
nearestLeft = j;
}
}
//scan from right to left to update R and calculate f[i][j]
int nearestRight = m;//virtual '0' at most far of left
for (int j = matrix[i].size()-1; j >= 0; --j)
{
R[j] = min(nearestRight, R[j]);
if (matrix[i][j] == '0')
{
nearestRight = j;
R[j] = m;//note here
}
//calculate f[i][j]
ans = max( ans, H[j]*(R[j]-L[j]-1) );
}
}
return ans;
}
};
[LeetCode]Maximal Rectangle
最新推荐文章于 2020-10-19 18:53:37 发布