【学习笔记】多项式相关算法

最近学了一下多项式相关算法,简单记录一下
记号说明: O ( A f ( n ) ) O(Af(n)) O(Af(n))表示时间复杂度 O ( f ( n ) ) O(f(n)) O(f(n)), FFT的常数为 A A A.
例如,进行了 6 6 6次大小为 2 n 2n 2n的DFT/IDFT, 则复杂度为 O ( 12 n log ⁡ n ) O(12n\log n) O(12nlogn)
以下的常数都是以我的实现方法为准,很可能有比我好的做法,如果有的话欢迎沟通(我太菜了)。

  1. 多项式乘法
    两个 n n n次多项式相乘, O ( 6 n log ⁡ n ) O(6n\log n) O(6nlogn)时间, 2 n 2n 2n空间
  2. 多项式求逆
    n n n次多项式求逆, O ( 12 n log ⁡ n ) O(12n\log n) O(12nlogn)时间, 4 n 4n 4n空间
    https://blog.csdn.net/suncongbo/article/details/84485718
  3. 多项式对数函数
    n n n次多项式对数函数, O ( 18 n log ⁡ n ) O(18n\log n) O(18nlogn), 4 n 4n 4n空间
    https://blog.csdn.net/suncongbo/article/details/84487306
  4. 多项式指数函数
    n n n次多项式指数函数, O ( 48 n log ⁡ n ) O(48n\log n) O(48nlogn), 4 n 4n 4n空间
    https://blog.csdn.net/suncongbo/article/details/84559818
  5. 多项式带余除法
    n n n次多项式除以小于 n n n次的多项式, O ( 24 n log ⁡ n ) O(24n\log n) O(24nlogn), 8 n 8n 8n空间
    https://blog.csdn.net/suncongbo/article/details/84853342
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值