Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

呜啊怎么又是数学了啊。。。数学比例 16 33 = 0.4848 \frac{16}{33}=0.4848 3316=0.4848

orz yhx-12243神仙

题目链接: https://codeforces.com/contest/947/problem/E

题意:
有一个 [ 0 , n ] [0,n] [0,n]的随机数 x x x初始为 i i i的概率为 p i p_i pi. m m m次操作每次从 [ 0 , x ] [0,x] [0,x]中等概率随机选择一个数 y y y x x x变成 y y y. 对每个 i = 0 , 1 , . . . , n i=0,1,...,n i=0,1,...,n m m m次之后 x = i x=i x=i的概率。

题解:
嗯,是个线代神题。本题解很长,希望大家都能耐心看懂。(当时我看题解也看了三小时多)
一、naïve的dp和矩乘优化
首先,一个 O ( n m ) O(nm) O(nm) d p dp dp很好想: 设 f [ i ] [ j ] f[i][j] f[i][j]表示 i i i轮后 x = j x=j x=j的概率,则轻易列出方程: f [ i ] [ j ] = ∑ k = i n d p [ i − 1 ] [ k ] k + 1 f[i][j]=\sum^{n}_{k=i} \frac{dp[i-1][k]}{k+1} f[i][j]=k=ink+1dp[i1][k].
按此 d p dp dp时间复杂度 O ( n m ) O(nm) O(nm), 太慢了。考虑优化。
写出转移矩阵: 令 ( n + 1 ) (n+1) (n+1)维列向量为 d p [ i ] dp[i] dp[i]数组, 则
f = [ 1 1 2 1 3 1 4 . . . 1 n + 1 0 1 2 1 3 1 4 . . . 1 n + 1 0 0 1 3 1 4 . . . 1 n + 1 . . . 0 0 0 0 . . . 1 n + 1 ] × f i − 1 \bm f= \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & ... & \frac{1}{n+1}\\ 0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & ... & \frac{1}{n+1}\\ 0 & 0 & \frac{1}{3} & \frac{1}{4} & ... & \frac{1}{n+1} \\ & & & & ... \\ 0 & 0 & 0 & 0 & ... & \frac{1}{n+1} \end{bmatrix}\times \bm f_{i-1} f=100021210031313104141410...............n+11n+11n+11n+11×fi1
令上面的转移矩阵为 A \bm A A. 如果直接利用矩阵乘法优化,时间复杂度 O ( n 3 log ⁡ m ) O(n^3\log m) O(n3logm), 还是太慢了。
即使是使用Hamilton-Cayley定理,复杂度也难以降到 O ( n 2 ) O(n^2) O(n2)以下。
那么我们该怎么办呢?于是一个神奇的做法出现了——矩阵对角化。
二、对转移矩阵特征系统的深入了解
在对矩阵进行对角化之前,我们先看一个概念——特征系统(包括特征根和特征向量)。
在这里特征系统相关知识不再阐述,随便一本线代书上就会讲。
那我们观察转移矩阵 A \bm A A, 发现一个事实—— ( n + 1 ) (n+1) (n+1)阶矩阵 A \rm A A共有 ( n + 1 ) (n+1) (n+1)个特征根,它们分别是 1 , 1 2 , 1 3 , . . . , 1 n + 1 1,\frac{1}{2},\frac{1}{3},...,\frac{1}{n+1} 1,21,31,...,n+11. 这是因为 A \rm A A是上对角矩阵,其特征多项式为 f ( λ ) = ∣ λ I − A ∣ = ∏ i = 1 n + 1 ( λ − 1 i ) f(\lambda)=|\lambda \bm I-\bm A|=\prod^{n+1}_{i=1} (\lambda-\frac{1}{i}) f(λ)=λIA=i=1n+1(λi1).
求出这个还不够,要对矩阵进行对角化,我们还需要求出它的特征向量。(什么你说为什么要求?一会就知道了T_T)
很好,我们对较小的矩阵进行手算,得出结论: 第 i i i个特征根 λ i = 1 i + 1 \lambda_i=\frac{1}{i+1} λi=i+11的特征向量为 v i = [ ( − 1 ) i ( − 1 ) i + 1 ( i 1 ) ( − 1 ) i + 2 ( i 2 ) . . . ( − 1 ) i + n ( i n ) ] T \bm v_i=\begin{bmatrix} (-1)^i & (-1)^{i+1}{i\choose 1} & (-1)^{i+2}{i\choose 2} & ... & (-1)^{i+n}{i\choose n}\end{bmatrix}^T vi=[(1)i(1)i+1(1i)(1)i+2(2i)...(1)i+n(ni)]T v i , j = ( − 1 ) i + j ( i j ) v_{i,j}=(-1)^{i+j}{i\choose j} vi,j=(1)i+j(ji). (注意这里 v i , j v_{i,j} vi,j表示的是第 i i i个特征(列)向量 v i \bm v_i vi的第 j j j个元素,如果放到特征向量构成的矩阵中应该是第 j j j行第 i i i列. 为了避免混乱,下文将用 v i , j v_{i,j} vi,j表示第 i i i个特征列向量的第 j j j个元素, V i , j V_{i,j} Vi,j表示特征向量构成的矩阵中第 i i i行第 j j j列的元素,即 V i , j = v j , i V_{i,j}=v_{j,i} Vi,j=vj,i.)
即: V = [ 1 − 1 1 − 1 . . . ( − 1 ) n 0 1 − 2 3 . . . ( − 1 ) n + 1 ( n 1 ) 0 0 1 − 3 . . . ( − 1 ) n + 2 ( n 2 ) . . . 0 0 0 0 . . . ( − 1 ) n + n ( n n ) ] \bm V=\begin{bmatrix} 1 & -1 & 1 & -1 & ... & (-1)^n \\ 0 & 1 & -2 & 3 & ... & (-1)^{n+1}{n\choose 1} \\ 0 & 0 & 1 & -3 & ... & (-1)^{n+2}{n\choose 2} \\ & & & & ... \\ 0 & 0 & 0 & 0 & ... & (-1)^{n+n}{n\choose n} \end{bmatrix} V=1000110012101330...............(1)n(1)n+1(1n)(1)n+2(2n)(1)n+n(nn)
其中 V \bm V V为每一个 v \bm v v列向量一起构成的矩阵。一会我们将看到,这个矩阵将起到非常重要的作用。
嗯,我们刚刚通过对较小的矩阵进行手算的方式得到了特征向量 V \bm V V, 现在我们尝试通过理论推导去证明这个公式。
我们先形式化特征向量的表达式: v i , j = ( − 1 ) i + j ( i j ) , V i , j = ( − 1 ) i + j ( j i ) v_{i,j}=(-1)^{i+j}{i\choose j}, V_{i,j}=(-1)^{i+j} {j\choose i} vi,j=(1)i+j(ji),Vi,j=(1)i+j(ij)
根据特征向量的定义,对于特征(列)向量 v i \bm v_i vi我们需要证明 A v i = λ i v i \bm A\bm v_i=\lambda_i\bm v_i Avi=λivi.
我们考虑写出式子: A v i \bm A\bm v_i Avi是一个 n × n n\times n n×n方阵和 n n n阶列向量的乘积,考虑乘积的第 r r r个元素就是矩阵 A \bm A A的第 r r r行和 v i \bm v_i vi的内积,则 ∑ j = 0 n A r , j v i , j = ∑ j = r n 1 j + 1 ( − 1 ) i + j ( i j ) = ∑ j = r i 1 j + 1 ( − 1 ) i + j i ! j ! ( i − j ) ! = 1 i + 1 ∑ j = r i ( − 1 ) i + j ( i + 1 ) ! ( j + 1 ) ! ( i − j ) ! = 1 i + 1 ∑ j = r i ( − 1 ) i + j ( i + 1 j + 1 ) = 1 i + 1 ∑ j = r i ( − 1 ) i + 1 ( j − i + 1 j + 1 ) = 1 i + 1 ( − 1 ) i + 1 ∑ j = r i ( j − i − 1 j + 1 ) = 1 i + 1 ( − 1 ) i + 1 ( ( i − i − 1 + 1 i + 1 ) − ( r − i − 1 r ) ) = 1 i + 1 ( − 1 ) i ( r − i − 1 r ) = ( − 1 ) i + r ( i r ) = λ i v i , r \sum^{n}_{j=0} A_{r,j}v_{i,j} =\sum^{n}_{j=r} \frac{1}{j+1}(-1)^{i+j}{i\choose j} \\ =\sum^{i}_{j=r} \frac{1}{j+1} (-1)^{i+j}\frac{i!}{j!(i-j)!}\\ =\frac{1}{i+1}\sum^{i}_{j=r}(-1)^{i+j}\frac{(i+1)!}{(j+1)!(i-j)!}\\ =\frac{1}{i+1}\sum^{i}_{j=r}(-1)^{i+j}{i+1\choose j+1}\\ =\frac{1}{i+1}\sum^{i}_{j=r}(-1)^{i+1}{j-i+1\choose j+1}\\ =\frac{1}{i+1}(-1)^{i+1}\sum^{i}_{j=r}{j-i-1\choose j+1}\\ = \frac{1}{i+1}(-1)^{i+1}({i-i-1+1\choose i+1}-{r-i-1\choose r})\\ =\frac{1}{i+1}(-1)^i{r-i-1\choose r}\\ =(-1)^{i+r}{i\choose r}=\lambda_i v_{i,r} j=0nAr,jvi,j=j=rnj+11(1)i+j(ji)=j=rij+11(1)i+jj!(ij)!i!=i+11j=ri(1)i+j(j+1)!(ij)!(i+1)!=i+11j=ri(1)i+j(j+1i+1)=i+11j=ri(1)i+1(j+1ji+1)=i+11(1)i+1j=ri(j+1ji1)=i+11(1)i+1((i+1ii1+1)(rri1))=i+11(1)i(rri1)=(1)i+r(ri)=λivi,r
嗯,这一步推导值得仔细体会。一共包含九行,其中第5和9行的原理是 ( − a b ) = ( a + b − 1 b ) ( − 1 ) b {-a\choose b}={a+b-1\choose b}(-1)^b (ba)=(ba+b1)(1)b; 第7行的原理是对杨辉三角任何一斜列求和,等于最右下角元素的下一个减去最左上角元素的左一个: ∑ j = 0 n ( a + j b + j ) = ( a + n + 1 b ) − ( a + n b − 1 ) \sum^{n}_{j=0} {a+j\choose b+j}={a+n+1\choose b}-{a+n\choose b-1} j=0n(b+ja+j)=(ba+n+1)(b1a+n).
下面仔细审视如此奇怪的推导的意图: 我们发现第三行把 1 j + 1 \frac{1}{j+1} j+11巧妙地转化成了 1 i + 1 \frac{1}{i+1} i+11, 第五行把 ( − 1 ) i + j (-1)^{i+j} (1)i+j变成了 ( − 1 ) i + 1 (-1)^{i+1} (1)i+1, 然后这样一个组合数求和的如此难以处理的问题被去掉了杂质,变成了一个纯粹的杨辉三角一斜列的求和。这就是要百费周折地各种化成负的再化回来的原因。这一段推导真的有很多精妙的地方,希望自己能够借鉴。好了,恢复正题。
刚才我们成功证明了特征向量 v i \bm v_i vi的表达式,然后这有什么用吗?

三、矩阵对角化加速运算——从 O ( n 3 log ⁡ m ) O(n^3\log m) O(n3logm) O ( n 2 ) O(n^2) O(n2)
这里是本题的重点。
首先,我们考虑现在要做的事情:快速计算该矩阵的 m m m次幂。假设这个矩阵是一个对角矩阵 d i a g ( x 0 , x 1 , . . . , x n ) \rm diag(x_0,x_1,...,x_n) diag(x0,x1,...,xn),则它的 m m m次方非常容易计算: d i a g ( x 0 m , x 1 m , . . . , x n m ) \rm diag(x_0^m,x_1^m,...,x_n^m) diag(x0m,x1m,...,xnm).
我们现在希望快速计算矩阵 f \bm f f m m m次幂,于是我们可以考虑把它转化为对角矩阵的幂运算。
我们找到一个可逆矩阵 Φ \bm \Phi Φ满足 Φ − 1 A Φ = B \bm\Phi^{-1}\bm A\bm\Phi=\bm B Φ1AΦ=B其中 B \bm B B为对角矩阵。有一个定理告诉我们, n × n n\times n n×n矩阵 A \bm A A可对角化当且仅当 A \bm A A n n n个线性无关的特征向量。
然后我们考虑如何计算 A m \bm A^m Am: Φ − 1 A Φ = B \bm \Phi^{-1}\bm A\bm \Phi=\bm B Φ1AΦ=B移项可得 A = Φ B Φ − 1 \bm A=\bm\Phi\bm B\bm\Phi^{-1} A=ΦBΦ1, 则 A m = ( Φ B Φ − 1 ) m = Φ B ( Φ − 1 Φ A ) m − 1 Φ − 1 = Φ B m Φ − 1 \bm A^m=(\bm \Phi\bm B\bm \Phi^{-1})^m=\bm \Phi\bm B(\bm \Phi^{-1}\bm \Phi\bm A)^{m-1}\bm\Phi^{-1}=\bm\Phi\bm B^m\bm\Phi^{-1} Am=(ΦBΦ1)m=ΦB(Φ1ΦA)m1Φ1=ΦBmΦ1, 因此只要求出 Φ B m Φ − 1 \bm\Phi\bm B^m\bm\Phi^{-1} ΦBmΦ1即可。
下面我们考虑如何求 Φ \bm\Phi Φ: 有一个定理告诉我们, Φ = [ v 1 v 2 v 3 . . . v n ] \bm\Phi=\begin{bmatrix}\bm v_1 & \bm v_2 & \bm v_3 & ... & \bm v_n \end{bmatrix} Φ=[v1v2v3...vn], 即为 n n n个列特征向量构成的矩阵。我们可以验证一下这一点: A Φ = A [ v 1 v 2 v 3 . . . v n ] = [ A v 1 A v 2 A v 3 . . . A v n ] = [ λ 1 v 1 λ 2 v 2 λ 3 v 3 . . . λ n v n ] = Φ d i a g ( λ 1 , λ 2 , λ 3 , . . . , λ n ) \bm A\bm \Phi=\bm A \begin{bmatrix} \bm v_1 & \bm v_2 & \bm v_3 & ... & \bm v_n \end{bmatrix}=\begin{bmatrix} \bm A\bm v_1 & \bm A\bm v_2 & \bm A\bm v_3 & ... & \bm A\bm v_n \end{bmatrix}=\begin{bmatrix}\lambda_1 \bm v_1 & \lambda_2 \bm v_2 & \lambda_3 \bm v_3 & ... & \lambda_n \bm v_n\end{bmatrix}=\bm \Phi \rm diag(\lambda_1 ,\lambda_2 , \lambda_3 , ... , \lambda_n) AΦ=A[v1v2v3...vn]=[Av1Av2Av3...Avn]=[λ1v1λ2v2λ3v3...λnvn]=Φdiag(λ1,λ2,λ3,...,λn), 从而 Φ − 1 A Φ = d i a g ( λ 1 , λ 2 , λ 3 , . . . , λ n ) \bm\Phi^{-1}\bm A\bm\Phi=\rm diag(\lambda_1,\lambda_2,\lambda_3,...,\lambda_n) Φ1AΦ=diag(λ1,λ2,λ3,...,λn).
于是,在这道题中,我们构造出桥接矩阵 Φ \bm \Phi Φ和它的逆矩阵,然后进行计算。
根据上面的推导, Φ i , j = ( − 1 ) i + j ( j i ) \bm \Phi_{i,j}=(-1)^{i+j} {j\choose i} Φi,j=(1)i+j(ij), 那如何求出 Φ − 1 \bm \Phi^{-1} Φ1呢?我们发现其实 Φ − 1 \bm \Phi^{-1} Φ1就是 Φ \bm\Phi Φ的每一项取绝对值的结果, Φ i , j − 1 = ( j i ) . \bm\Phi^{-1}_{i,j}={j\choose i}. Φi,j1=(ij). Φ − 1 = [ 1 1 1 1 . . . ( n 0 ) 0 1 2 3 . . . ( n 1 ) 0 0 1 3 . . . ( n 2 ) . . . 0 0 0 0 . . . ( n n ) ] \bm\Phi^{-1}=\begin{bmatrix} 1 & 1 & 1 & 1 & ... & {n\choose 0} \\ 0 & 1 & 2 & 3 & ... & {n\choose1} & \\ 0 & 0 & 1 & 3 & ... & {n\choose 2} \\ & && & ... \\ 0 & 0 & 0 & 0 & ... &{n\choose n}\end{bmatrix} Φ1=1000110012101330...............(0n)(1n)(2n)(nn) 我们可以用二项式反演推出这一点。 ∑ k = 0 n Φ i , k − 1 Φ k , j = ∑ k = 0 n Φ i , k − 1 ( − 1 ) k + j ( j k ) = ∑ k = 0 n Φ i , k − 1 ( − 1 ) j − k ( j k ) = [ i = j ] Φ i , j − 1 = ∑ k = 0 n [ i = k ] ( j k ) = ( j k ) \sum^{n}_{k=0}\bm \Phi^{-1}_{i,k}\bm\Phi_{k,j}=\sum^{n}_{k=0}\bm\Phi^{-1}_{i,k}(-1)^{k+j}{j\choose k}\\ =\sum^n_{k=0}\bm\Phi^{-1}_{i,k}(-1)^{j-k}{j\choose k}=[i=j]\\ \bm\Phi^{-1}_{i,j}=\sum^{n}_{k=0}[i=k]{j\choose k}={j\choose k} k=0nΦi,k1Φk,j=k=0nΦi,k1(1)k+j(kj)=k=0nΦi,k1(1)jk(kj)=[i=j]Φi,j1=k=0n[i=k](kj)=(kj)
最后一步用到了二项式反演。
就这样,我们求出了该矩阵的桥接矩阵 Φ \bm\Phi Φ及其逆矩阵 Φ − 1 \bm\Phi^{-1} Φ1, 这样我们的问题转化为了将一个矩阵 f 0 \bm f_0 f0依次左乘 Φ − 1 , B m , Φ \bm\Phi^{-1}, \bm B^m, \bm\Phi Φ1,Bm,Φ得到 f m \bm f_m fm.暴力做是 O ( n 2 ) O(n^2) O(n2)的。

四、最后的优化——从 O ( n 2 ) O(n^2) O(n2) O ( n log ⁡ n ) O(n\log n) O(nlogn)
先考虑如何快速左乘 B m \bm B^m Bm. 显然因为是对角矩阵,直接 O ( n ) O(n) O(n)做即可。
然后考虑如何快速左乘 Φ − 1 \bm \Phi^{-1} Φ1: 推一发设 b k = ∑ i = k n ( i k ) a i = ∑ i = k n i ! k ! ( i − k ) ! a i b_k=\sum^{n}_{i=k} {i\choose k}a_i=\sum^{n}_{i=k}\frac{i!}{k!(i-k)!}a_i bk=i=kn(ki)ai=i=knk!(ik)!i!ai, 则 k ! b k = ∑ i = k n i ! a i ( i − k ) ! k!b_k=\sum^{n}_{i=k}\frac{i!a_i}{(i-k)!} k!bk=i=kn(ik)!i!ai. 令 α k = k ! a k , β k = k ! b k , γ k = k ! \alpha_k=k!a_k, \beta_k=k!b_k, \gamma_k=k! αk=k!ak,βk=k!bk,γk=k!, β k = ∑ i = k n α i γ i − k \beta_k=\sum^{n}_{i=k}\alpha_i\gamma_{i-k} βk=i=knαiγik把数组 β \beta β α \alpha α倒过来可得 β n − k = ∑ i = k n α n − i γ i − k = ∑ i + j = n − k α i γ j \beta_{n-k}=\sum^{n}_{i=k}\alpha_{n-i}\gamma_{i-k}=\sum_{i+j=n-k}\alpha_i\gamma_j βnk=i=knαniγik=i+j=nkαiγj. 看出来了吧?是个卷积。愉快地使用FFT解决, O ( n log ⁡ n ) O(n\log n) O(nlogn).
快速左乘 Φ \bm \Phi Φ同理 k ! b k = ∑ i = 0 n ( − 1 ) i − k ( i − k ) ! ( i ! a i ) k!b_k=\sum^{n}_{i=0}\frac{(-1)^{i-k}}{(i-k)!}(i!a_i) k!bk=i=0n(ik)!(1)ik(i!ai)。总时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn).
问题至此解决!

代码实现

(说了这么多其实就是fft一下)

//Wrong Coding:
//FFT to (dgr<<1)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define llong long long
#define modinc(x) {if(x>=P) x-=P;}
using namespace std;
const int N = 1<<19;
const int LGN = 19;
const int P = 998244353;
const int G = 3;
llong fact[N+3];
llong finv[N+3];
llong a[N+3];
llong b[N+3];
llong c[N+3];
llong d[N+3];
llong e[N+3];
llong f[N+3];
llong g[N+3];
llong fftid[N+3];
llong tmp1[N+3],tmp2[N+3];
int n; llong m;
llong quickpow(llong x,llong y)
{
 llong cur = x,ret = 1ll;
 for(int i=0; y; i++)
 {
  if(y&(1ll<<i)) {ret = ret*cur%P; y-=(1ll<<i);}
  cur = cur*cur%P;
 }
 return ret;
}
llong mulinv(llong x) {return x<=N ? finv[x]*fact[x-1]%P : quickpow(x,P-2);}
void init_fftid(int dgr)
{
 int len = 0; for(int i=0; i<=LGN; i++) if(dgr==(1<<i)) {len = i; break;}
 fftid[0] = 0ll;
 for(int i=1; i<dgr; i++) fftid[i] = ((fftid[i>>1])>>1)|((i&1)<<(len-1));
}
int getdgr(int x)
{
 int ret = 1; while(ret<x) ret<<=1;
 return ret;
}
void ntt(int dgr,int coe,llong poly[],llong ret[])
{
 init_fftid(dgr);
 for(int i=0; i<dgr; i++) ret[i] = poly[i];
 for(int i=0; i<dgr; i++) if(i<fftid[i]) swap(ret[i],ret[fftid[i]]);
 for(int i=1; i<=(dgr>>1); i<<=1)
 {
  llong tmp = quickpow(G,(P-1)/(i<<1));
  if(coe==-1) tmp = mulinv(tmp);
  for(int j=0; j<dgr; j+=(i<<1))
  {
   llong expn = 1ll;
   for(int k=0; k<i; k++)
   {
    llong x = ret[k+j],y = ret[k+i+j]*expn%P;
    ret[k+j] = x+y; modinc(ret[k+j]);
    ret[k+i+j] = x-y+P; modinc(ret[k+i+j]);
    expn = expn*tmp%P;
   }
  }
 }
 if(coe==-1)
 {
  llong tmp = mulinv(dgr);
  for(int i=0; i<dgr; i++) ret[i] = ret[i]*tmp%P;
 }
}
int main()
{
 fact[0] = 1ll;
 for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
 finv[N] = quickpow(fact[N],P-2);
 for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
 scanf("%d%I64d",&n,&m);
 for(int i=0; i<=n; i++) scanf("%I64d",&a[i]);
 for(int i=0; i<=n; i++)
 {
  b[i] = mulinv(i+1);
  b[i] = quickpow(b[i],m);
 }
 int _dgr = n+1,dgr = getdgr(_dgr);
 for(int i=0; i<_dgr; i++) d[i] = fact[i]*a[i]%P;
 for(int i=0; i<_dgr-1-i; i++) swap(d[i],d[_dgr-1-i]);
 for(int i=0; i<_dgr; i++) e[i] = finv[i];
 for(int i=0; i<_dgr; i++) f[i] = (i&1)==0 ? finv[i] : (P-finv[i])%P;
 //calculate C = INVPHI*A
 ntt(dgr<<1,1,d,tmp1); ntt(dgr<<1,1,e,tmp2);
 for(int i=0; i<(dgr<<1); i++) tmp1[i] = tmp1[i]*tmp2[i]%P;
 ntt(dgr<<1,-1,tmp1,c);
 for(int i=_dgr; i<(dgr<<1); i++) c[i] = 0ll;
 for(int i=0; i<_dgr-1-i; i++) swap(c[i],c[_dgr-1-i]);
 for(int i=0; i<dgr; i++) c[i] = c[i]*finv[i]%P;
 //calculate C = B*C
 for(int i=0; i<_dgr; i++) c[i] = c[i]*b[i]%P;
 //calculate G = PHI*C
 for(int i=0; i<_dgr; i++) d[i] = fact[i]*c[i]%P;
 for(int i=0; i<_dgr-1-i; i++) swap(d[i],d[_dgr-1-i]);
 ntt(dgr<<1,1,d,tmp1); ntt(dgr<<1,1,f,tmp2);
 for(int i=0; i<(dgr<<1); i++) tmp1[i] = tmp1[i]*tmp2[i]%P;
 ntt(dgr<<1,-1,tmp1,g);
 for(int i=0; i<_dgr-1-i; i++) swap(g[i],g[_dgr-1-i]);
 for(int i=0; i<dgr; i++) g[i] = g[i]*finv[i]%P;
 for(int i=0; i<=n; i++) printf("%I64d ",g[i]);
 return 0;
}

后事
——卧槽这E怎么这么难……
——其实这场还有F。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值