[CF947E]Perpetual Subtraction

280 篇文章 1 订阅

题目

题目背景
数学:一门严谨地说明 crashed \textsf{crashed} crashed 是神的理论。

题目描述
传送门 to CF

思路

首先变换是一个线性变换。问题相当于是求矩阵的幂,乘一个向量。

有两种思考方向:一是解构这个矩阵,常用相似变换,比如变成置换;二是说明这个矩阵代表了特殊线性变换,比如卷积矩阵。后者一般可以抛开矩阵的背景,直接从别的角度刻画问题。

因此我试了试从 G F \rm GF GF 角度推导。直接从过程出发,得到的结果涉及 [ x m ] [x^m] [xm] 远处值,完蛋。当然后来 Tiw-Air-OAO \textsf{Tiw-Air-OAO} Tiw-Air-OAO 告诉我可以用 G F \rm GF GF 求解。话说这真的不算 c o n s t r u c t i v e \rm constructive constructive 吗 😱

考虑解构这个矩阵。该矩阵是三角阵,特征值一眼即知;手算几个特征向量,规律就很容易发现了。

f x = ( − 1 ) n − x ( n x )    ( x ⩽ n ) f_x=(-1)^{n-x}{n\choose x}\;(x\leqslant n) fx=(1)nx(xn)(xn)
g x = ∑ y ⩾ x f y y + 1 = ∑ y ⩾ x ( − 1 ) n − y ( n y ) y + 1 = ∑ y ⩾ x ( n + 1 y + 1 ) ( n + 1 ) − 1 ( − 1 ) n − y = 1 n + 1 ∑ y ⩾ x ( − 1 ) n − y ( n y ) + ∑ y ⩾ x ( − 1 ) n − y ( n y + 1 ) = 1 n + 1 ( n x ) ( − 1 ) n − x = f x n + 1 \begin{aligned} g_x =\sum_{y\geqslant x}\frac{f_y}{y+1} &=\sum_{y\geqslant x}\frac{(-1)^{n-y}{n\choose y}}{y+1}\\ &=\sum_{y\geqslant x}{n+1\choose y+1}(n+1)^{-1}(-1)^{n-y}\\ &={1\over n+1}\sum_{y\geqslant x}(-1)^{n-y}{n\choose y}+\sum_{y\geqslant x}(-1)^{n-y}{n\choose y+1}\\ &={1\over n+1}{n\choose x}(-1)^{n-x}=\frac{f_x}{n+1} \end{aligned} gx=yxy+1fy=yxy+1(1)ny(yn)=yx(y+1n+1)(n+1)1(1)ny=n+11yx(1)ny(yn)+yx(1)ny(y+1n)=n+11(xn)(1)nx=n+1fx

所以这就是特征向量。对角化,等价于解 { η i } \{\eta_i\} {ηi} 使得
f i = ∑ j ⩾ i ( − 1 ) j − i ( j i ) η j f_i=\sum_{j\geqslant i}(-1)^{j-i}{j\choose i}\eta_j fi=ji(1)ji(ij)ηj

我今天才知道这是 二项式反演 的标准形式 😓

或者你数学直觉足够好,可以指出:记 F ( x ) F(x) F(x) f i f_i fi O G F \rm OGF OGF,事实上 η i \eta_i ηi 的生成函数是 F ( x − 1 ) F(x{-}1) F(x1) 。因此可以很容易得到反演
η i = ∑ j ⩾ i ( j i ) f j \eta_i=\sum_{j\geqslant i}{j\choose i}f_j ηi=ji(ij)fj

因为 H ( x + 1 ) = F ( x ) \Eta(x{+}1)=F(x) H(x+1)=F(x) 嘛。总复杂度 O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn)

代码

#include <cstdio>
#include <algorithm> // Almighty XJX yyds!!!
#include <cstring>  // oracle: ZXY yydBUS!!!
#include <cctype> // Huge Egg Dog eats me!!!
using llong = long long;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
# define rep0(i,a,b) for(int i=(a); i!=(b); ++i)
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; !isdigit(c); c=getchar()) if(c == '-') f = -f;
	for(; isdigit(c); c=getchar()) a = a*10+(c^48);
	return a*f;
}

const int MOD = 998244353, LOGMOD = 30;
inline void modAddUp(int &x, const int &y){
	if((x += y) >= MOD) x -= MOD; // faster?
}
inline llong qkpow(llong b, int q){
	llong a = 1;
	for(; q; q>>=1,b=b*b%MOD) if(q&1) a = a*b%MOD;
	return a;
}
const int MAXN = 400000;
int g[LOGMOD], inv2[LOGMOD];
inline void prepareNtt(){
	int p = MOD-1, x = 0; inv2[0] = 1;
	for(inv2[1]=(MOD+1)>>1; !(p&1); p>>=1,++x)
		inv2[x+1] = int(llong(inv2[1])*inv2[x]%MOD);
	for(g[x]=int(qkpow(3,p)); x; --x)
		g[x-1] = int(llong(g[x])*g[x]%MOD);
}
void ntt(int a[], int n){
	for(int w=1<<n>>1,x=n; x; w>>=1,--x)
	for(int *p=a; p!=a+(1<<n); p+=(w<<1))
	for(int *i=p,*j=p+w,v=1; i!=p+w; ++i,++j,v=int(llong(v)*g[x]%MOD)){
		const llong t = llong((*i)+MOD-(*j))*v%MOD;
		modAddUp(*i,*j), *j = int(t);
	}
}
void dntt(int a[], int n){
	for(int w=1,x=1; x<=n; w<<=1,++x)
	for(int *p=a; p!=a+(1<<n); p+=(w<<1))
	for(int *i=p,*j=p+w,v=1; i!=p+w; ++i,++j,v=int(llong(v)*g[x]%MOD)){
		const int t = int(llong(*j)*v%MOD);
		modAddUp(*j=*i,MOD-t), modAddUp(*i,t);
	}
	std::reverse(a+1,a+(1<<n));
	for(int *i=a; i!=a+(1<<n); ++i)
		*i = int(llong(*i)*inv2[n]%MOD);
}
/// @return minimal k s.t. 2^k > n
inline int getNttLen(int n){
	return 32-__builtin_clz(n);
}
inline void array_mul(int a[], const int b[], int n){
	for(; n; --n,++a,++b) *a = int(llong(*a)*(*b)%MOD);
}

int a[MAXN], b[MAXN];
int main(){
	prepareNtt();
	int n = readint(); llong m; scanf("%lld",&m);
	for(int i=0,jc=1; i<=n; ++i,jc=int(llong(i)*jc%MOD)){
		a[i] = int(llong(readint())*jc%MOD);
		b[i] = int(qkpow(jc,MOD-2)); // inv
	}
	int len = getNttLen(n), zhishu = int(m%(MOD-1));
	std::reverse(b,b+n+1); // minus convolution
	ntt(a,len+1), ntt(b,len+1), array_mul(a,b,2<<len), dntt(a,len+1);
	for(int i=0,jc=1; i<=n; ++i,jc=int(llong(i)*jc%MOD)){
		llong inv = qkpow(i+1,MOD-2); // multiplier
		a[i] = int(qkpow(inv,zhishu)*a[i+n]%MOD);
		b[i] = int(qkpow(jc,MOD-2)); // reset
		if(i&1) b[i] = MOD-b[i]; // negate
	}
	memset(a+n+1, 0, ((2<<len)-n-1)<<2);
	memset(b+n+1, 0, ((2<<len)-n-1)<<2);
	std::reverse(b, b+n+1); // minus convolution
	ntt(a,len+1), ntt(b,len+1), array_mul(a,b,2<<len), dntt(a,len+1);
	for(int i=0,jc=1; i<=n; ++i,jc=int(llong(i)*jc%MOD))
		printf("%lld ",a[i+n]*qkpow(jc,MOD-2)%MOD);
	putchar('\n');
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值