优化算法 - 爬山,模拟退火算法

转载 2011年10月15日 17:15:15

一. 爬山算法 ( Hill Climbing )

     介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
    爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

图1

 


二. 模拟退火(SA,Simulated Annealing)思想

        爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

         模拟退火算法描述:

         若J( Y(i+1) )>= J( Y(i) )  (即移动后得到更优解),则总是接受该移动

         若J( Y(i+1) )< J( Y(i) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

  这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

  根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

    P(dE) = exp( dE/(kT) )

  其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

  随着温度T的降低,P(dE)会逐渐降低。

  我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

  关于爬山算法与模拟退火,有一个有趣的比喻:

  爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

  模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。


下面给出模拟退火的伪代码表示。


三. 模拟退火算法伪代码

/*
 *  J(y):在状态y时的评价函数值
 *  Y(i):表示当前状态
 *  Y(i+1):表示新的状态
 *  r: 用于控制降温的快慢
 *  T: 系统的温度,系统初始应该要处于一个高温的状态
 *  T_min :温度的下限,若温度T达到T_min,则停止搜索
*/
while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ;  

  if ( dE >= 0 )  //表达移动后得到更优解,则总是接受移动
        Y(i+1) = Y(i) ;  //接受从Y(i)到Y(i+1)的移动
  else
  {
    // 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也
        if ( exp( dE/T ) > random( 0 , 1 ) )
            Y(i+1) = Y(i) ;  //接受从Y(i)到Y(i+1)的移动
  }
  T = r * T ;  //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快
  /*
  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
  */
  i ++ ;
}


四. 使用模拟退火算法解决旅行商问题

  旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

  旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

  使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

3. 重复步骤1,2直到满足退出条件

  产生新的遍历路径的方法有很多,下面列举其中3种:

1. 随机选择2个节点,交换路径中的这2个节点的顺序。

2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

3. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。


五. 算法评价

        模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

 from here : http://www.cnblogs.com/heaad/   转载请注明

实战进阶学习Unity3d游戏开发

-
  • 1970年01月01日 08:00

优化算法-爬山法和模拟退火

优化算法-爬山法和模拟退火1.随机搜索算法随机搜索不是一种好的算法,但是它是爬山法和模拟退火的基础,可以帮 助我们理解爬山法和模拟退火法。现在简单介绍一下随机搜索算法,随机 确定许多个解,然后选择...
  • weq27
  • weq27
  • 2017-04-22 11:21:56
  • 470

集体智慧编程——优化搜索算法:爬山法,模拟退火算法,遗传算法-Python实现

在优化问题中,有两个关键点 代价函数:确定问题的形式和规模之后,根据不同的问题,选择要优化的目标。如本文涉及的两个问题中,一个优化目标是使得航班选择最优,共计12个航班,要使得总的票价最少且每个人的等...
  • bcj296050240
  • bcj296050240
  • 2016-03-09 23:12:02
  • 5085

关于爬山算法、模拟退火算法和遗传算法区别

这三种算法都是用来求解函数“最大值”问题的算法,我们可以把函数曲线理解成一个一个山峰和山谷组成的山脉(如图片所示)。那么我们可以设想所得到的每一个解就是一只青蛙,我们希望它们不断的向着更高处跳去,直到...
  • wubin0721
  • wubin0721
  • 2015-02-16 15:36:41
  • 1684

爬山算法&模拟退火

优化算法入门系列文章目录(更新中):   1. 模拟退火算法   2. 遗传算法   一. 爬山算法 ( Hill Climbing )          介绍模拟退火前,先介绍爬山算法。爬...
  • Lin_disguiser
  • Lin_disguiser
  • 2016-08-08 00:28:48
  • 3262

随机优化算法---爬山法VS模拟退火法

随机优化算法–爬山法VS模拟退火算法 随机优化算法,由于开始和过程都是随机的数值,所以每次产生的结果都不一样。但大致收敛方向是一致的。 爬山法是一种局部最优的算法(本质上属于贪心法),也...
  • Chenming_Hnu
  • Chenming_Hnu
  • 2018-02-09 01:20:31
  • 122

模拟退火算法C#源码+实例

  • 2011年03月24日 11:25
  • 146KB
  • 下载

优化算法1:模拟退火算法思想解析

1.算法简介 模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。...
  • bi_mang
  • bi_mang
  • 2016-09-02 18:28:25
  • 1495

全局优化算法:模拟退火算法

序言前面讨论过一些迭代算法,包括牛顿法、梯度方法、共轭梯度方法和拟牛顿法,能够从初始点出发,产生一个迭代序列。很多时候,迭代序列只能收敛到局部极小点。因此,为了保证算法收敛到全局最小点,有时需要在全局...
  • touristman5
  • touristman5
  • 2017-02-28 11:03:50
  • 508

模拟退火算法C++实现

  • 2015年05月15日 16:59
  • 7KB
  • 下载
收藏助手
不良信息举报
您举报文章:优化算法 - 爬山,模拟退火算法
举报原因:
原因补充:

(最多只允许输入30个字)