39、交通政策中的社交媒体与用户生成内容:位置数据与实际应用

交通政策中的社交媒体与用户生成内容:位置数据与实际应用

1. 位置数据识别

在交通领域,运营者和管理者通常关注从社交媒体中识别与自身负责的交通服务密切相关的信息。大多数发布在交通管理部门或供应商正式网站上的消息可能与当地相关,但由于交通系统存在网络结构,上下游的交通活动也可能与特定地理位置相关。不同的管理部门可能负责交通系统网络的不同部分,且有不同的网站。例如,关于城际和本地服务衔接的投诉可能发布在城际服务运营商的网站上,但对寻求改善衔接服务的本地供应商也有价值。

因此,需要从众多可用消息中识别出与特定位置和/或特定交通服务相关的消息。有两种可能的位置识别方法:
- 识别消息发布者的当前位置
- 文本消息发布者位置的主要信息来源是社交媒体用户账户自愿发布的地理元数据。但实际上,很多用户不提供此信息,即使消息有地理标签,也可能不准确。
- 消息可能涉及与用户家乡不同的运输位置,例如旅行时。
- 移动设备的GPS坐标可提供用户位置的隐式元数据,但这只是所有社交媒体流量的一部分,且需要用户同意。
- 研究人员正在努力提高从普及设备推断位置的精度。鉴于当前此类元数据覆盖范围的限制,也在研究其他隐式信息源用于位置推断,如社交网络结构,因为用户往往与社交网络中的同龄人居住在地理上相近的地方;还可以根据消息内容推断用户位置,特别是基于当地语言特征可以进行精细的地理区分。
- 从消息内容中识别位置 :考虑到地名的高度歧义性,这一任务具有挑战性。例如,“利物浦”可能指英国城市、伦敦火车站(利物浦街)、美国城市或澳大利亚郊区。已经提出了几种基于消息内容识别地理位置的方法:

【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现算法验证。文中还列举了大量相关领域的研究主题代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值