离散傅里叶变换问题解析
1. 离散傅里叶级数(DFS)系数计算
给定了多个周期性序列,要求根据 DFS 定义计算其 DFS 系数,并使用 MATLAB 验证结果。例如:
- $\tilde{x}_1(n) = {4, 1, -1, 1}, N = 4$
- $\tilde{x}_2(n) = {2, 0, 0, 0, -1, 0, 0, 0}, N = 8$
- $\tilde{x}_3(n) = {1, 0, -1, -1, 0}, N = 5$
- $\tilde{x}_4(n) = {0, 0, 2j, 0, 2j, 0}, N = 6$
- $\tilde{x}_5(n) = {3, 2, 1}, N = 3$
操作步骤:
1. 根据 DFS 定义公式 $\tilde{X}(k)=\sum_{n = 0}^{N - 1}\tilde{x}(n)e^{-j\frac{2\pi}{N}kn}$ 计算每个序列的 DFS 系数。
2. 使用 MATLAB 编写代码进行验证,示例代码如下:
% 以 x1 为例
x1 = [4, 1, -1, 1];
N = 4;
k = 0:N-1;
X1 = zeros(1, N);
for n = 0:N-1
X1 = X1 + x1(n+1)*exp(-1j*2*pi/N*k*n);
end
disp(X1);
2. 根据 DFS 系数确定周期性序列
给出了多个周期性 DFS 系数,要求先使用 IDFS 定义确定周期性序列,再用 MATLAB
超级会员免费看
订阅专栏 解锁全文
1052

被折叠的 条评论
为什么被折叠?



