1085 背包问题

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
Output
输出可以容纳的最大价值。
Input示例
3 6
2 5
3 8
4 9
Output示例
14


01背包问题(要么放要么不放)

思路:

1. 如果背包剩下的容量<物体重量,则不能放入背包。

     即:dp[i][j]=dp[i-1][j]

2. 如果背包剩下的容量>=物体重量,分两种情况:

        a. 不放    即:dp[i][j]=dp[i-1][j]

        b. 放       即:dp[i-1][j-s[i].t]+s[i].p

 比较两种情况即可。

代码:

#include<iostream>
#include<algorithm>
using namespace std;

struct node
{
    int t;
    int p;
}s[105];

int dp[105][10005];  //第i个物体放到容量为j的最大价值

int max(int a,int b)
{
    return a>b?a:b;
}

int main()
{
    int n,w;
    cin>>n>>w;
    for(int i=1;i<=n;i++)
        cin>>s[i].t>>s[i].p;
    for(int i=1;i<=n;i++)  //注意能取n
    {
        for(int j=0;j<=w;j++)
        {
            if(j<s[i].t)  //如果背包剩下的容量<物体重量
                dp[i][j]=dp[i-1][j];  //则不能放入背包
            else  //否则,两种情况,放入背包和不放入
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-s[i].t]+s[i].p);
        }
    }
    cout<<dp[n][w]<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值