在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000) 第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
Output
输出可以容纳的最大价值。
Input示例
3 6 2 5 3 8 4 9
Output示例
14
01背包问题(要么放要么不放)
思路:
1. 如果背包剩下的容量<物体重量,则不能放入背包。
即:dp[i][j]=dp[i-1][j]
2. 如果背包剩下的容量>=物体重量,分两种情况:
a. 不放 即:dp[i][j]=dp[i-1][j]
b. 放 即:dp[i-1][j-s[i].t]+s[i].p
比较两种情况即可。
代码:
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int t;
int p;
}s[105];
int dp[105][10005]; //第i个物体放到容量为j的最大价值
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int n,w;
cin>>n>>w;
for(int i=1;i<=n;i++)
cin>>s[i].t>>s[i].p;
for(int i=1;i<=n;i++) //注意能取n
{
for(int j=0;j<=w;j++)
{
if(j<s[i].t) //如果背包剩下的容量<物体重量
dp[i][j]=dp[i-1][j]; //则不能放入背包
else //否则,两种情况,放入背包和不放入
dp[i][j]=max(dp[i-1][j],dp[i-1][j-s[i].t]+s[i].p);
}
}
cout<<dp[n][w]<<endl;
return 0;
}