1088 最长回文子串

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
回文串是指aba、abba、cccbccc、aaaa这种左右对称的字符串。
输入一个字符串Str,输出Str里最长回文子串的长度。
Input
输入Str(Str的长度 <= 1000)
Output
输出最长回文子串的长度L。
Input示例
daabaac
Output示例
5



基于manacher算法的一种方法,如果数据过大不可行

manacher看这个->1089 最长回文子串 V2(Manacher算法)

首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:

                                         1    2    3    4   5    6   7    8   9   10   11

Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文子串的最右字符到T[i]的长度

比如:len[8]=4->  以b为中心的最长回文子串是#a#b#a#,从最右字符到b长度为4。

对于上面的例子,可以得出Len[i]数组为:

 

对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1。(len[8]->4*2-1)

经过观察可知,T中所有的回文子串,其中#的数量一定比其他字符的数量多 1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。

有了这个性质,那么原问题就转化为求所有的Len[i]。


设每次len[i]为j。


还是以len[8] (#a#b#a#) 为例:

记i为最长回文子串中心在T中的位置,i=8。初始j=1。

if(s[i-j]==s[i+j]) j++;  //关键代码

解析:i=8,j=1—>s[7]==s[9]  j=2;

        i=8,j=2—>s[6]==s[10]  j=3;

        i=8,j=3—>s[5]==s[11]  j=4;

由上可知,每次j++,就是由中心位置向两边继续扩,如果两边相等,继续向外扩。

一共可以向外扩多少,说明两边相同的字符有多少对,再加上中心(j的初始值1),最后j的值就是该中心值len[]。

代码:

#include<iostream>
#include<cstring>
using namespace std;

char str[12000];
char s[12000];

int main()
{
	cin>>str;
    int i,j,maxx=1,temp;
    int n=strlen(str);
    for(i=n;i>=1;i--)
    {
        s[i*2+1]='#';
        s[i*2]=str[i-1];
    }
    s[0]=s[1]='#';
    n=strlen(s);
    for(i=2;i<n;i++)
    {
        j=1;
        while(s[i-j]==s[i+j]&&i-j>=1&&i+j<n)
            j++;
        temp=j-1;
        if(temp>maxx)
            maxx=temp;
    }
    cout<<maxx<<endl;
	return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sunny_hun/article/details/79965849
个人分类: 字符串 51NOD
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭