threejs前端模型会走路的人模型gltf格式模型包含动作action
适合前端开发threejs调用的人物模型
人物为穿西装打领带黑色西服黑色皮鞋,腿部和胳膊可以动
文件包含三个文件
人物A.gltf
man.bin
business02_m_35.png
threejs通过action调用人物模型的动作
吸烟识别模型yolov5权重文件pt格式
吸烟识别模型yolov5权重文件pt格式
仅支持yolov5,不支持yolov8和yolov11 距离越近检测效果越好,场景越简单检测效果越好
玩手机识别模型yolov5权重文件pt格式
口罩识别模型yolov5权重文件pt格式
仅支持yolov5,不支持yolov8和yolov11 距离越近检测效果越好,场景越简单检测效果越好
口罩识别模型yolov5权重文件pt格式
口罩识别模型yolov5权重文件pt格式
仅支持yolov5,不支持yolov8和yolov11 距离越近检测效果越好,场景越简单检测效果越好
灭火器正常检测模型yolov5权重文件pt格式
灭火器正常检测模型yolov5权重文件pt格式
仅支持yolov5,不支持yolov8和yolov11
距离越近检测效果越好,场景越简单检测效果越好
安全帽安全服检测模型yolov5权重文件深度学习模型pt文件
安全帽安全服检测模型yolov5权重文件深度学习模型pt文件
不支持yolov8和yolov11,需要在yolov5下面执行检测
检测场景距离越近检测效果越好,环境越简单检测效果越好
人员跌倒检测模型yolov5的权重文件格式为.pt文件
用于yolov5的视频检测,人员摔倒检测,仅支持yolov5框架,不支持yolov8和yolov11,请注意选择下载
yolo11n.pt转成的onnx格式文件
yolo11n.pt转成的onnx格式文件,用于部署到服务器上直接使用,检测内容为:目标识别
AI智能立体2.5浅蓝色风格ppt模板
AI智能立体2.5浅蓝色风格ppt模板
简约,大气,浅蓝色小清新风格
适合教育培训,讲座,总结等
多个多角度铸铁管扫描点云数据ply格式
多个多角度铸铁管扫描点云数据ply格式
一个大箱子里很多铸铁管,各种角度杂乱摆放
用于定位匹配测试数据
堆箱扫描点云ply格式
一个大箱子里杂乱的堆着很多长方体箱子
大箱子里的小箱子各种角度各种位置
用于定位匹配测试使用
齿轮外壳点云数据ply格式
一筐齿轮,各种角度,适用于定位匹配测试
json格式的中文字体库threejs支持的格式
json格式的中文字体库threejs支持的格式
一共包含6个字体库
阿里黑体:AlimamaShuHeiTi_Bold.json
仿宋体:FangSong_Regular.json
微软雅黑常规:MicrosoftYaHei_Regular.json
微软雅黑加粗:MicrosoftYaHei_Bold.json
下面两种字体比较细一点
兰亭:FZLanTingHeiS-UL-GB_Regular.json
ZH_CN.json
对应文章《填充点云孔洞(较大的洞)halcon算法》所需的点云
对应文章《填充点云孔洞(较大的洞)halcon算法》所需的点云,一个平面,上面有不规则的孔洞,缺陷
深度学习数据集:烟雾火焰数据集(2000个图像)
# 此数据为火灾检测数据集,已经对数据进行坐标标注,并按照VOC格式存储;
# image num: 2059, xml num: 2059
声名:
此数据集包含2部分:
1.自己爬取的图像,自己标注
2.他人开源的数据,有的有标注,有的无标注(我给它重新标注)
受电弓数据集训练集1197张图标注为voc格式
受电弓数据集标注为voc格式
训练集1197张图
评估集114张图
验证集57张图
数据大多数为车顶运载相机拍摄,部分图像为地面拍摄
可用于yolo+pytorch的目标识别,数据集为voc格式,内容包含jpg图像和xml文件
用于深度学习
voc格式轮胎缺陷数据集训练集884张测试集46张
voc格式轮胎缺陷数据集训练集884张测试集46张
用于深度学习,适用于yolo框架
里面每张图都有对应的标注文件,文件格式为xml
山体地貌点云.vtk格式的点云用于vtk库的使用及计算
山体地貌点云.vtk格式用于vtk库的使用及计算
如链接文章中等值线的显示用到的点云
https://blog.csdn.net/charce_you/article/details/96598140
用于等值线的计算
显示,轮廓提取等算法的应用
.vtk格式的点云用于测试vtk库的点云
.vtk格式的点云用于测试vtk库的点云
vtk官方教程很多用到vtk点云的方法,因此需要vtk格式的点云
资源里是.vtk格式的点云数据,是一只猫的点云
曲面(弧面、柱面)展平(拉直)瓶子标签识别ocr
曲面(弧面、柱面)展平(拉直)需要自己做一个遮罩层
此代码主要是为了方便嫁接使用
自己用视觉算法识别遮罩即可进行嫁接
里面代码去掉了原始程序对gpu的依赖(即自动检测遮罩层位置,所以需要自己做遮罩层)
如果就想用深度学习识别,不想去掉的话,可以访问原始代码地址
https://github.com/AntoninLeroy/wine_label_reader_toolkit
原始代码包含自动识别、展开、字符识别整个流程
如果只想要柱面展开代码,请自行下载
本里面包含两个版本,一个版本包含字符识别,一个版本不包含字符识别
指针式仪表倾斜校正opencv算法python代码及仪表图像(包含倾斜的和模板图像)
指针式仪表倾斜校正opencv算法python代码及仪表图像(包含倾斜的和模板图像)
opencv 里面的sift算法,如果想改成SURF算法直将“SIFT_create”修改成“SURF_create”即可
#SURF_create受专利保护,直接运行报错,SIFT_create可以直接跑
下面提供了两种使用SURF_create的方法
1. 卸载已有安装opencv-python:
pip uninstall opencv-python
2. 安装opencv-contrib-python 3.2版本以下:
pip install opencv-contrib-python==3.4.2
也可以不降低版本号,进行编译,详细流程见链接
https://blog.csdn.net/m0_50736744/article/details/129351648
汽车表面划痕voc深度学习数据集
汽车表面划痕分割数据集,其中包含4777张左右汽车图像,带xml分割标签信息,可用于缺陷检测、深度学习,划痕检测等。
已经划分好训练集、验证集、测试集,直接调用即可
pcl读取点云并显示在嵌入窗口picture control中c++源码
pcl读取点云并显示在嵌入窗口picture control中C++源码
使用vs2022开发,windows窗口程序,mfc程序,pcl版本号为1.12.1
在使用时需要配置pcl环境,pcl环境正确配置成功才可使用
关于pcl的配置,请查看本人的文章,有详细说明
里面有详细的配置说明文档
详细说明见下面的链接
https://blog.csdn.net/sunnyrainflower/article/details/131481088
中国移动研究院发布的《我国人工智能大模型发展动态》2023年4月
国内至少有 19
家企业及科研院所涉足人工智能大模型训练,主要分为大型科技
公司、科研院校和初创科技团队三类。具体来看:百度、阿里等
12 家大型科技公司和中国科学院、清华大学等 3 家科研院校已经
提供开放测试,或有明确的推出时间计划;字节跳动、搜狗创始
人王小川、美团创始人王慧文、创新工场创始人李开复等则是最
近对外宣布组建团队,进军大模型研发领域。其中,字节跳动旗
下火山引擎于 4 月 18 日发布自研 DPU(数据处理器)等系列云产
品,推出新版机器学习平台,可以支持万卡级大模型训练、微秒
级延迟网络,为预训练模型提供强大的算力支持。
matlab对点云进行ICP配准算法
matlab对点云进行ICP配准算法
%读取靶标矩阵
%做空间变换
%对于确定的关系,求解RT
%利用求解得到的RT计算变换之后的点
vs2022+win10 生成的CSF.lib库用于计算布料滤波的库结合pcl调用
根据链接:
https://blog.csdn.net/qq_42976369/article/details/120974552
生成的csf.lib库
源码地址:
https://github.com/jianboqi/CSF
调用方法:
https://blog.csdn.net/Amelie_11/article/details/125831222
java写的modbus接口
Modbus协议特点
-标准、开放,用户可以免费、放心地使用Modbus协议,不需要交纳许可证费,也不会侵犯知识产权。目前,支持Modbus的厂家超过400家,支持Modbus的产品超过600种。
-Modbus可以支持多种电气接口,如RS-232、RS-485等,还可以在各种介质上传送,如双绞线、光纤、无线等。
-Modbus的帧格式简单、紧凑,通俗易懂。用户使用容易,厂商开发简单。
Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验.
去雾python源码使用opencv库
包含需要去雾的5张图像和python的源码
关于去雾的算法详细说明请查询本人的博客
随着图像处理技术和计算机视觉技术的蓬勃发展,对特殊天气下的场景检测和图像处理成为重要的研究方向。在雾天拍摄的图像容易受雾或霾的影响,导致图片模糊、对比度低以至于丢失图像重要信息。因此,需要对带雾图像进行去雾,处理图像信息,保证其他计算机视觉任务的正常运行。
烟雾火焰数据集yolov4的模型权重文件
烟雾火焰数据集yolov4的权重文件
用于检测火焰、烟雾,森林火焰等提前预警
实时检测aruco标签-增加卡尔曼滤波算法
资源包含
实时检测代码:Kalman3my.py
用到的视频:aruco.mp4-----》罗技相机拍摄的aruco标签视频,或者直接自己调用摄像头也可以
标定罗技相机生成的:标定文件.yaml
标定方法见文章,里面有详细说明
https://blog.csdn.net/sunnyrainflower/article/details/131112182
A4纸可打印的15mm的9行6列的黑白棋盘格
A4纸可打印的15mm的9行6列的黑白棋盘格
A4纸直接打印即可,取消自动缩放,需要按照实际尺寸打印
棋盘格为15mm*15mm的黑白格子
适用于opencv对相机的标定
鱼眼相机标定等
pdf文件,直接下载即可打印
halcon的接口用于python的调用程序(三)
python调用halcon程序/.hdev文件/直接调用halcon引擎
https://blog.csdn.net/sunnyrainflower/article/details/128364587
halcon的接口用于python的调用程序(二)
python调用halcon程序/.hdev文件/直接调用halcon引擎
https://blog.csdn.net/sunnyrainflower/article/details/128364587
halcon的接口用于python的调用程序(一)
python调用halcon程序/.hdev文件/直接调用halcon引擎,
https://blog.csdn.net/sunnyrainflower/article/details/128364587
C#调用openAI的APi接口实现窗口聊天功能
.netframework6.0
使用Betalgo.OpenAI.GPT3库
实现从textBox1输入问题,点击发送按钮,提出的问题和结果显示到listBox1窗口
需要注意的是需要自己注册获得openAI的密钥,以及代理地址,否则无法访问获得结果
大气简洁蓝色程序员简历模板
大气简洁蓝色程序员简历模板,包括学习经历、工作经历,参与项目,个人技能等多项介绍
pclsharp视觉框架源码,调用pclsharp控件,实现c#对点云的显示
里面文件包含
PclSharpFrameShf.sln
PclSharpFrameShf.csproj
Form1.cs
Form1.Designer.cs
Form1.resx
Program.cs
packages.config
PclSharp.dll
PclSharp.Extern.dll
PclSharp.Vis.dll
System.Numerics.Vectors.dll
Kitware.VTK.dll
等多个dll文件
包含两个点云cat-2.ply和pnts3D_pcd.pcd
说明:框架比较简单,仅做了点云的显示,里面的剩下几个功能因为找不到库,还未实现,不影响运行
需要电脑配置好pcl库,编译好对应的子库,然后才能运行上面的代码
详细说明见博客
规则图形点云/圆柱/长方体/圆锥/三棱体/圆形
规则图形点云/圆柱/长方体/圆锥/三棱体/圆形
点云为pcd格式,可以用CloudCompare.exe直接打开
每个形状各一个,适合于点云算法测试使用
绝缘子图像用于灰度投影积分算法的测试图像
《基于深度学习和灰度纹理特征的铁路接触网绝缘子状态检测》论文中的三个截图,主要是用于算法的验证。
一共包含三张图,两张缺陷的,一张正常的
主要用于:灰度投影积分算法测试
这个算法很容易将缺陷位置检测出来
缺陷图是绝缘子磁瓦缺失了至少大半个绝缘子轮廓图
pcl1.12.1的库目录配置包含目录配置及详细的lib名称设置
pcl1.12.1的库目录配置包含目录配置及详细的lib名称设置
vtkcgns-9.1d.lib
vtkChartsCore-9.1d.lib
vtkCommonColor-9.1d.lib
vtkCommonComputationalGeometry-9.1d.lib
vtkCommonCore-9.1d.lib
vtkCommonDataModel-9.1d.lib
vtkCommonExecutionModel-9.1d.lib
vtkCommonMath-9.1d.lib
vtkCommonMisc-9.1d.lib
vtkCommonSystem-9.1d.lib
vtkCommonTransforms-9.1d.lib
vtkDICOMParser-9.1d.lib