【问题描述】利用递归梯形公式,在区间[0, pi/2]范围内连续增加子区间来求函数f(x)=(x^2+x+1)cos(x)的积分近似值。起始时子区间个数为1,每次迭代,子区间个数增加一倍。一直迭代,直到积分近似值与真实值的差的绝对值小于给定的阈值为止,在区间[0, pi/2]范围内函数积分真实值为2.038197427067。
【输入形式】在屏幕上输入所求积分的精度值d。
【输出形式】输出迭代次数,以及积分近似值(保留d位小数)。
【样例1输入】
2
【样例1输出】
4
2.03
【样例1说明】
输入:在屏幕上输入所求积分的精度值d=2,从而计算得到阈值为10^(-2)=0.01。
输出:经过4次迭代,得到满足精度要求的积分近似值为2.03。
【评分标准】根据输入得到的输出准确
#include<iostream>
#include<cmath>
#include<iomanip>
#define pi 3.1415926
using namespace std;
double a = 0, b = pi / 2;//积分上限、下限
double n;//积分近似值
int d;//精度值
double D;