POJ Strategic game(树形DP)

题目链接:http://poj.org/problem?id=1463

其实这个题目也是比较水的一个树状DP,和上面一篇博客思路基本上差不多,甚至动态方程都差不多

开始建立树的时候,直接建立树,建树的时候直接让大的成为小的子树,由于题目说了这是一棵树,所以

就不用担心直接建树就好了,最后从0(根)号节点DFS即可!

每个子树的根节点可有两个状态,要么安排士兵要么不安排,如果安排,那么子节点可以安排也可以不安排

如果不安排,那么子节点就要安排,这个其实不好证明,但是能想得通!

本质上是从叶子节点向根节点递推的,贪心的想一下叶子节点是不会放士兵的,那么只要上上一层不放士兵,

那么上一层就一定要放!

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdio.h>
#include <vector>
#define maxn 2000
#define MIN(a,b) (a<b?a:b)
#define MAX(a,b) (a>b?a:b)
using namespace std;
int n,m;
struct point{
    int clu,exu;
    vector<int> child;
}po[maxn];
int tree_dp(int root){
    po[root].clu=1;
    if(po[root].child.empty()){
       po[root].exu=0;
       return 0;
    }
    for(int i=0;i<po[root].child.size();i++){
        tree_dp(po[root].child[i]);
    }
    for(int i=0;i<po[root].child.size();i++){
        po[root].clu+=MIN(po[po[root].child[i]].clu,po[po[root].child[i]].exu);
        po[root].exu+=po[po[root].child[i]].clu;
    }
    return 0;
}
int main(){
    int i,j,k,a,b;
    while(scanf("%d",&n)!=EOF){
        for(i=0;i<n;i++) po[i].child.clear(),po[i].clu=po[i].exu=0;
        for(i=0;i<n;i++){
            scanf("%d:(%d)",&a,&m);
            for(j=0;j<m;j++){
                scanf("%d",&b);
                if(a>b)po[b].child.push_back(a);
                else po[a].child.push_back(b);
            }
        }
        tree_dp(0);
        printf("%d\n",MIN(po[0].clu,po[0].exu));
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值