Pandas及Numpy二维数组

二维数组表示方式

  • Python原生 : 列表的列表
  • Numpy :ndarray ,比python的list性能更好,有mean()、std()、sum()等更多的跟数学计算相关的内置函数,作用于整个数组,访问语法差别:a[1,2](Numpy ndarray)、a[1][2]( Python List)
  • Pandas : DataFrame
  • 轴:axis,确定行的方向还是列的方向
import numpy as np
price=np.array([
[3,4,5,6,7],
[5,6,5,4,3],
[4,4,5,4,3],
[5,5,6,7,4],
[5,6,7,5,4],
])
print (price)#打印二维数组
print (price[0,2])#打印第一行第三个数
print (price[1,:])#打印第二行所有数
print (price[1,1:3])#打印第二行2到第3个数
print (price[:,1])#打印第二列所有数
print (price[:,price[0,:].argmax()].mean())#第一行最大的列的均值
for i in range(5):
    print (price[i,:].mean())#计算所有行的均值
print (price.mean(axis=0))#按列来计算均值
print (price.mean(axis=1))#按行来计算均值
[[3 4 5 6 7]
 [5 6 5 4 3]
 [4 4 5 4 3]
 [5 5 6 7 4]
 [5 6 7 5 4]]
5
[5 6 5 4 3]
[6 5]
[4 6 4 5 6]
4.2
5.0
4.6
4.0
5.4
5.4
[4.4 5.  5.6 5.2 4.2]
[5.  4.6 4.  5.4 5.4]
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页