基于统计的N-gram模型命名实体识别

1、实体名识别方法


命名实体识别方法:基于规则的方法、基于统计的方法。

基于统计的方法—基本思想是利用训练语料中的语言信息作为先验概率,来对测试语料的标注概率作估计。标注语料时不需要渊博的专业知识,

并且可以在较短时间内完成。这类系统在移植到新的领域时可以不做或少做改动,只要利用新的语料训练一遍即可。

从目前来看,基于统计的方法在整个自然语言处理领域中用的最多,与基于规则的方法相比,基于统计的方法不是靠人工编写规则来识别实体

名,而是依靠大规模的语料库,通过对标注语料的训练来实现自我学习的过程,自动获取语言学知识,与编写规则相比,带标注的语料库的构建要相对容易些,对构建者的语言学知识要求也比较低.


对于基于统计的实体名识别方法来说,建立一个合适的统计模型是其关键所在,然后利用大规模的语料对识别模型中的参数进行训练,另外语料

库的规 模和标注质量对模型的最终训练结果影响也很大。用于实体名识别的统计方法主要有N-gram语言模型、HMM、最大熵模型、决策树方法、基于转换的学习方法、推进方法、表决感知器方法以及条件马尔可夫模型等。其中评价较好的是N-gram语言模型和HMM,而最大熵模型因其自身的特点仍然是当前的主要研究方向。


一般来说,基于统计的方法效率要高于基于规则的方法,而且基于统计的方法是机器从语料库中自我学习获取知识因而一致性较好,不像基于规

则的方法那样具有很强的主观性。

N-gram 语言模型是用来计算一个词串或者是一句话W=w1w2...wn出现概率的统计模型。N-gram 模型假设某词的出现概率只与该词前面的 n-1 个

词有关。即:词wi 出现的概率为 P(wi|wi-n+1...wi-1)。而整个词串出现的概率为




按照相关历史长度的不同,n-gram 语言模型可以根据 n 的不同取值分为不同的文法模型。
当n=1时,即出现在第 i 位上的词wi独立于历史时,称为一元文法模型,也被称为一阶马尔可夫链,词串概率表示为


当n=2时,即出现在第 i 位上的词wi仅与它前面的一个历史词wi-1有关,称为二元文法模型,也被称为二阶马尔可夫链,词串概率表示为



为计算某个词串或一个句子的概率,根据 n 的不同,应选择不同的参数。假设一种语言的词表中有| V |个单词,当 n=1 时,每个单词的出现概率

和它的历史没有任何关系,则总共需要确定| V | − 1个概率参数P (wi );当 n=2 时,每个单词的出现概率和它前一个单词有关,则总共需要确定| V |*(| V | −1 )个概率参数P(wi|wj)。



2、参数 N 的选择及最大似然估计

对于 N-gram 语言模型,在参数估计方面一般采取最大似然估计。利用语料数据中词汇同现的相对频率就可以得到条件概率的极大似然估计,如

下式:

(*)
 
其中N(wi-n+1,wi-n+2,...,wi-1,wi)是在训练语料中词串Wi-n+1,...,Wi-1,Wi的出现频率。
对于1-gram语言模型,每个单词的出现的概率的计算如下:


对于2-gram语言模型,其计算如下:


模型中参数n的选择要兼顾有效性和描述能力。一般情况下,模型的描述能力随n值的增大而增强,然而估计的有效性却反而降低。但是过小的n

值又不能包含长距离的词法信息,所以目前常用的n值一般取2或3


不同的N-gram模型中参数n划分计算出来的词概率是不一样的。对分词结果中的每一个词,通过公式(*)计算得到该词的出现概率,根据设定的

阀值,判断是否接受该词,若计算结果大于阀值,则将该词接受为实体,然后分词窗口后移,继续下一词的实体识别。

命名实体识别是基于统计的模型以及条件随机场算法的框架下的N-Gram模型进行的,与编写规则的实体识别方法相比,带标注的语料库的构建

要相对容易些,对构建者的语言学知识要求也比较低。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是对这些模型和技术在不同场景和需求下的使用时机进行分类列举,并简要说明其原因: 1. 文本表示方法: - One-hot编码:适用于简单的文本分类任务,其中词汇量较小且词汇之间没有明显的顺序关系。 - TF-IDF:适用于文本分类、信息检索和关键词提取等任务,能够考虑词语在语料库中的重要性。 - N-gram:适用于语言模型和文本生成任务,通过考虑词语之间的上下文关系来提高模型的性能。 2. 词向量表示方法: - Word2Vec:适用于语义表示和词语相似度计算等任务,能够将词语映射到连续的向量空间中。 - FastText:适用于处理大规模文本数据,尤其是对于低频词有较好的处理效果。 - GloVe:适用于词语相似度计算和文本分类等任务,结合全局统计信息和局部上下文信息来生成词向量。 3. 语言模型和预训练模型: - NNLM(神经网络语言模型):适用于自然语言处理中的语言建模任务,能够生成连续的语言序列。 - ELMo、GPT、UniLM:适用于各种NLP任务,如文本分类、命名实体识别等,通过预训练语言模型来提供丰富的语义表示。 - BERT、ALBERT、RoBERTa、SimBert:适用于多种NLP任务,如文本分类、问答系统等,通过预训练模型和Fine-tuning来提供深层次的语义理解。 4. 序列模型: - RNN、LSTM、GRU:适用于序列建模和自然语言生成任务,能够考虑上下文信息和长期依赖关系。 - BiLSTM-CRF:适用于命名实体识别和序列标注任务,结合双向LSTM和条件随机场来提高序列标注的准确性。 5. 语言生成与翻译: - Seq2seq:适用于机器翻译和文本摘要等任务,通过编码器-解码器结构将一个序列映射到另一个序列。 - Transformer:适用于机器翻译和文本生成任务,通过自注意力机制来建模长距离依赖关系。 6. 序列标注和结构化预测: - HMM、CRF:适用于命名实体识别和序列标注任务,通过建模序列的概率分布来进行标注。 - Viterbi算法:适用于解码HMM和CRF模型的最优路径,能够找到给定观测序列下的最可能的隐状态序列。 7. 文本摘要和关键词提取: - TF-IDF、TextRank:适用于提取文本关键词和生成摘要,通过计算词语的重要性来选择最相关的内容。 8. 基于图的模型: - GPT:适用于生成自然语言文本、对话系统等任务,通过建模文本序列的概率分布来生成连续的语言。 - MT5:适用于机器翻译任务,通过多任务学习的方式来提高翻译质量。 9. 强化学习与生成对话: - ChatGPT、UniLM:适用于生成对话和聊天机器人等任务,通过预训练模型和强化学习来生成连贯和有意义的对话。 10. 文本分类和情感分析: - CNN、XGBoost:适用于文本分类和情感分析等任务,能够从文本中提取局部和全局的特征进行分类。 11. 共现矩阵和搜索算法: - 共现矩阵、集束搜索:适用于信息检索和推荐系统等任务,能够通过统计词语之间的共现关系来提供相关的结果。 以上列举的使用时机是根据各个模型和技术的特点和优势来进行分类的,但实际使用时还需要结合具体的任务和数据来选择最合适的模型和技术。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值