Linux perf sched Summary

本文详细介绍了如何使用Linux perf sched工具进行内核调度器分析,重点讨论了perf record和perf script在处理调度事件时的开销,并展示了如何通过perf sched latency和perf sched switch命令来观测和分析调度延迟、上下文切换事件。文章提供了丰富的示例,以帮助理解不同选项和输出的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Overview

perf sched 使用了转储后再分析 (dump-and-post-process) 的方式来分析内核调度器的各种事件。
而这往往带来一些问题,因为这些调度事件通常非常地频繁,可以达到每秒钟百万级, 进而导致 CPU,内存和磁盘的在调度器事件记录上的严重开销。
我最近一直在用 eBPF/bcc (包括 runqlat) 来写内核调度器分析工具,使用 eBPF 特性在内核里直接对调度事件的分析处理,可以极大的减少这种事件记录的开销。
但是有一些性能分析场景里,我们可能想用 perf shed 命令去记录每一个调度事件, 尽管比起 ebpf 的方式,这会带来更大的开销。
想象一下这个场景,你有只有五分钟时间去分析一个有问题的云的虚拟机实例,在这个实例自动销毁之前,你想要为日后的各种分析去记录每个调度事件。

我们以记录一秒钟内的所有调度事件作为开始:

# perf sched record -- sleep 1
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 1.886 MB perf.data (13502 samples) ]

这个命令的结果是一秒钟记录了 1.9 Mb 的数据,其中包含了 13,502 个调度事件样本。
数据的大小和速度和系统的工作负载以及 CPU 数目的多少直接相关 (本例中正在一个 8 CPU 的服务器上 build 一个软件)。
事件记录如何被写入文件系统的过程已经被优化过了:为减少记录开销,perf 命令仅仅被唤醒一次,去读事件缓冲区里的数据,然后写到磁盘上。
因此这种方式下,仍旧会有非常显著的开销, 包括调度器事件的产生和文件系统的数据写入。

这些调度器事件包括,

# perf script --header
# ========
# captured on: Sun Feb 26 19:40:00 2017
# hostname : bgregg-xenial
# os release : 4.10-virtual
# perf version : 4.10
# arch : x86_64
# nrcpus online : 8
# nrcpus avail : 8
# cpudesc : Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz
# cpuid : GenuineIntel,6,62,4
# total memory : 15401700 kB
# cmdline : /usr/bin/perf sched record -- sleep 1 
# event : name = sched:sched_switch, , id = { 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759...
# event : name = sched:sched_stat_wait, , id = { 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2...
# event : name = sched:sched_stat_sleep, , id = { 2768, 2769, 2770, 2771, 2772, 2773, 2774, ...
# event : name = sched:sched_stat_iowait, , id = { 2776, 2777, 2778, 2779, 2780, 2781, 2782,...
# event : name = sched:sched_stat_runtime, , id = { 2784, 2785, 2786, 2787, 2788, 2789, 2790...
# event : name = sched:sched_process_fork, , id = { 2792, 2793, 2794, 2795, 2796, 2797, 2798...
# event : name = sched:sched_wakeup, , id = { 2800, 2801, 2802, 2803, 2804, 2805, 2806, 2807...
# event : name = sched:sched_wakeup_new, , id = { 2808, 2809, 2810, 2811, 2812, 2813, 2814, ...
# event : name = sched:sched_migrate_task, , id = { 2816, 2817, 2818, 2819, 2820, 2821, 2822...
# HEADER_CPU_TOPOLOGY info available, use -I to display
# HEADER_NUMA_TOPOLOGY info available, use -I to display
# pmu mappings: breakpoint = 5, power = 7, software = 1, tracepoint = 2, msr = 6
# HEADER_CACHE info available, use -I to display
# missing features: HEADER_BRANCH_STACK HEADER_GROUP_DESC HEADER_AUXTRACE HEADER_STAT 
# ========
#
    perf 16984 [005] 991962.879966:   sched:sched_wakeup: comm=perf pid=16999 prio=120 target_cpu=005
	[...]

perf sched 可以用几种不同的方式记录调度事件,其 help 子命令总结如下:

# perf sched -h

 Usage: perf sched [] {record|latency|map|replay|script|timehist}

    -D, --dump-raw-trace  dump raw trace in ASCII
    -f, --force           don't complain, do it
    -i, --input     input file name
    -v, --verbose         be more verbose (show symbol address, etc)

2. perf sched latency

其中,perf sched latency 可以给出每个任务 (task) 的调度延迟,包括平均和最大延迟:

# perf sched latency

 -----------------------------------------------------------------------------------------------------------------
  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |
 ------------------------------------------------------------------------------
<think>我们正在讨论如何使用perf sched来分析调度性能。根据提供的引用材料,我们可以总结出以下关键点: 1. perf sched 是一个用于分析调度器行为的工具,可以记录调度事件并进行分析。 2. 它提供了多个子命令,如record, latency, map, replay, script, timehist等。 3. 通过perf sched,我们可以查看调度延迟、唤醒延迟等,并能够进行统计分析(而ftrace只能提供原始数据)。 具体步骤: 1. 记录调度事件:使用`sudo perf sched record`命令,它会记录一段时间内的调度事件。 2. 分析调度延迟:使用`sudo perf sched latency`,它会显示每个任务的调度延迟统计信息,包括最大延迟、平均延迟等。 3. 查看调度映射:使用`sudo perf sched map`,它会显示一个ASCII码的调度映射,展示各个CPU上的任务调度情况。 此外,引用中还提到了perf sched与ftrace的区别:perf sched能够提供统计分析功能,而ftrace只能提供原始数据。 因此,针对用户的问题“我想分析和优化调度性能 请问perf sched 分析调度性能”,我们可以给出以下步骤: ### 使用perf sched分析调度性能的步骤 1. **记录调度事件**: 运行以下命令开始记录调度事件(默认会持续记录直到按Ctrl+C停止): ```bash sudo perf sched record -a ``` 选项`-a`表示记录所有CPU的事件。你也可以通过`-p <pid>`来指定只记录某个进程的事件。 2. **查看调度延迟**: 记录完成后,运行以下命令查看调度延迟统计: ```bash sudo perf sched latency ``` 输出会显示每个任务的调度延迟情况,包括: - 任务ID(PID) - 任务名称(Comm) - 最大延迟(Max delay) - 平均延迟(Avg delay) - 延迟分布(Histogram) 重点关注那些最大延迟或平均延迟较高的任务,它们可能是性能瓶颈。 3. **查看调度映射**: 运行以下命令查看调度映射: ```bash sudo perf sched map ``` 输出会以ASCII字符的形式展示各个CPU上的任务调度情况,每一列代表一个CPU,每一行代表一个时间点上的任务执行情况。通过这个映射,可以直观地看到任务在CPU间的迁移和调度情况。 4. **其他分析**: - 使用`perf sched script`可以输出详细的调度事件列表,类似于ftrace的输出,但格式更易读。 - 使用`perf sched timehist`可以按时间顺序显示调度事件,包括每个任务的唤醒、调度进入和退出的时间。 ### 优化建议 根据分析结果,可以采取以下优化措施: - **减少任务迁移**:如果发现任务在CPU间频繁迁移,可以考虑通过`taskset`或`cpuset`将任务绑定到特定CPU。 - **优化唤醒路径**:如果发现唤醒延迟较高,检查任务是否被频繁唤醒,或者是否有锁竞争导致唤醒延迟。 - **调整优先级**:对于实时性要求高的任务,可以适当提高其优先级(使用`chrt`命令)。 - **减少内核抢占**:如果发现内核态执行时间过长导致调度延迟,可以尝试优化内核代码路径或使用抢占式内核。 ### 注意事项 - 运行perf需要root权限(使用sudo)。 - 记录的时间越长,生成的数据量越大,分析所需时间也越长。 通过以上步骤,你可以使用perf sched工具来分析和优化系统的调度性能。 §§相关问题§§ 1. 如何解读perf sched latency的输出结果? 2. perf sched map的输出如何帮助我们理解CPU调度? 3. 除了perf sched,还有哪些工具可以用于分析调度性能? 4. 如何针对特定的进程进行调度性能分析?</think>### 使用 perf sched 分析调度性能的完整指南 #### 一、核心功能说明 `perf sched` 是 Linux 性能分析工具集的核心组件,专门用于分析内核调度器行为。它通过内核的调度器 tracepoint 捕获原始调度事件,并提供**统计分析功能**(如延迟计算、时间线可视化),这是区别于 `ftrace` 等工具的关键优势[^2][^4]。 #### 二、操作流程详解 1. **记录调度事件** 捕获系统级调度行为(建议 root 权限): ```bash sudo perf sched record -a sleep 10 # 监控所有CPU 10秒 ``` *注:添加 `-p <PID>` 可聚焦特定进程[^4]* 2. **分析调度延迟** 查看任务唤醒延迟和调度延迟分布: ```bash sudo perf sched latency ``` **输出关键指标**: ``` Task | Runtime ms | Switches | Avg delay ms | Max delay ms ---------------------------------------------------------------- chrome(1234) | 102.34 | 120 | 0.15 | 12.3 kworker/0:3(567) | 15.78 | 30 | 0.08 | 3.2 ``` *`Max delay` >5ms 可能预示调度问题[^1]* 3. **可视化 CPU 调度映射** 生成 ASCII 调度时序图: ```bash sudo perf sched map ``` **输出示例**: ``` *A0 1234.chrome . . . B0 567.kworker A0* . . . B0* . . ``` *每列代表一个 CPU 核心,符号位置表示任务执行时间段[^3]* 4. **原始事件分析** 查看详细调度事件序列: ```bash sudo perf sched script | less ``` #### 三、关键性能指标解读 1. **唤醒延迟 (Wakeup Latency)** 任务就绪到实际获得 CPU 的时间,理想值应 <1ms。 *公式:$$ \text{Wakeup Latency} = T_{\text{scheduled}} - T_{\text{wakeup}} $$* 2. **调度延迟 (Scheduler Latency)** 从调度决策到任务开始执行的时间,受中断和抢占影响[^1]。 3. **迁移成本 (Migration Cost)** 通过 `perf sched map` 观察任务在 CPU 间的迁移频率,频繁迁移会降低缓存命中率。 #### 四、优化场景与方案 | 问题现象 | 优化建议 | 验证命令 | |-------------------------|-----------------------------------|------------------------------| | 高唤醒延迟 (>5ms) | 调整任务优先级 (`chrt`),减少竞争 | `perf sched latency` | | CPU 负载不均 | 优化 CPU 亲和性 (`taskset`) | `perf sched map` | | 频繁上下文切换 | 合并小任务或增大时间片 | `perf sched script | grep switch` | | 实时任务延迟 | 启用 `SCHED_DEADLINE` 策略 | `perf sched timehist -MV` | #### 五、进阶技巧 - **时间直方图分析**: `perf sched timehist -MV` 生成带时间戳的调度直方图 - **热点函数定位**: 结合 `perf record -e sched:sched_switch` 捕获调用栈 - **容器环境分析**: `perf sched record -e context-switches -c 1000000` 高精度采样 > **注意**:生产环境建议配合 `--call-graph dwarf` 捕获完整调用栈[^3],分析延迟根源时需排除硬件中断影响(检查 `/proc/interrupts`)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值