【NOI2015】【程序自动分析】【并查集+离散化】

Description

 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

Output

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

Sample Input

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

Sample Output

NO
YES

HINT

 在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。


在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。


1≤n≤100000

1≤i,j≤1000000000
题解:很显然可以用并查集来判断相等或不相等的关系,因为数值比较大而n比较小,所以离散一下就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct use{
	int v1,v2,p1,p2,kind;
}a[1000001];
bool ff;
int fa[1000001],t,n,x,y,k,tt,c[1000001],tot;
int find(int x)
{
	if (x!=fa[x]) fa[x]=find(fa[x]);
	return fa[x];
}
int main()
{
   freopen("prog.in","r",stdin);
   freopen("prog.out","w",stdout);
   scanf("%d",&t);
   while (t--)
   {
   	  memset(c,0,sizeof(c));
	  scanf("%d",&n);tt=0;ff=true;
   	  for (int i=1;i<=2*n;i++) fa[i]=i;
   	  for (int i=1;i<=n;i++)
   	    {
   	       scanf("%d%d%d",&x,&y,&k);
   	       c[++tt]=x;c[++tt]=y;
   	       a[i].v1=x;a[i].v2=y;a[i].kind=k;
   	    }
   	  sort(c+1,c+tt+1);
   	  tot=unique(c+1,c+tt+1)-c-1;
   	  for (int i=1;i<=n;i++)
   	    {
   	    	int r1,r2;
			a[i].p1=upper_bound(c+1,c+tot+1,a[i].v1)-c-1;
   	    	a[i].p2=upper_bound(c+1,c+tot+1,a[i].v2)-c-1;
   	    	r1=find(a[i].p1);r2=find(a[i].p2);
   	    	if (a[i].kind==1)
   	    	 {
   	    	 	r1=find(a[i].p1);r2=find(a[i].p2);
   	    	    if (r1!=r2) fa[r1]=r2;
			 }
   	    }
	   for (int i=1;i<=n;i++)
	     {
	     	int r1,r2;
	     	if (a[i].kind==0)
	     	 {
	     	   r1=find(a[i].p1);r2=find(a[i].p2);
		       if (r1==r2){ff=false;break;}
	     	 }
	     }
	  if (ff) printf("YES\n"); 
	  else printf("NO\n");
   }	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值