组队学习8:自然语言处理NLP(二)

组队学习介绍

  最近又懒惰了(虽然确实事情也多),好久没有空更新博客,遂报名公众号 Datawhale 的 NLP 学习小组来督促自己学习。学习小组的目的主要是细致地学习 NLP 的一些概念,更好地巩固自己的文本挖掘能力。

  学习小组的时间安排大致如下:

  这两天还是有点忙,就借鉴了一下 Datawhale-Raymond 助教撰写的文案。希望不要拿到飞机票!

引言

Word2vec回顾、优化、基于统计的词向量、GloVe、词向量评价、词义

基于统计的词向量

词向量目的:希望通过低维稠密向量来表示词的含义

在这里插入图片描述

课程中举了一个例子:三个句子,比如对于like这个词,在三个句子中,其左右共出现2次I,1次deep和1次NLP,所以like对应的词向量中,I、deep和NLP维的值分别为2,1,1。

不足点

但这些预训练模型也存在不足:

  • 词梳理很多时,矩阵很大,维度很高,需要的存储空间也很大
  • 当词的数目是在不断增长,则词向量的维度也在不断增长
  • 矩阵很稀疏,即词向量很稀疏,会遇到稀疏计算的问题

https://pdfs.semanticscholar.org/73e6/351a8fb61afc810a8bb3feaa44c41e5c5d7b.pdf

上述链接中的文章对例子中简单的计数方法进行了改进,包括去掉停用词、使用倾斜窗口、使用皮尔逊相关系数等,提出了COALS模型,该模型得到的词向量效果也不错,具有句法特征和语义特征。

GloVe

GloVe的全称是GloVe: bal Vectors for Word Representation

是这门课的老师Christopher D. Manning的研究成果

GloVe目标是综合基于统计和基于预测的两种方法的优点。

模型目标:词进行向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息

流程:输入语料库–> 统计共现矩阵–> 训练词向量–>输出词向量

构建统计共现矩阵X

KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ X_{i j} \end{e…

i表示上下文单词

j表示在特定大小的上下文窗口(context window)内共同出现的次数。这个次数的最小单位是1,但是GloVe不这么认为:它根据两个单词在上下文窗口的距离dd.

提出了一个衰减函数(decreasing weighting):用于计算权重,也就是说距离越远的两个单词所占总计数(total count)的权重越小。

构建词向量和共现矩阵之间的关系

KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ w_{i}^{T} \til…

其中,$ w_{i}^{T} $ 和 $ \tilde{w}{j} 是 我 们 最 终 要 求 解 的 词 向 量 ; 是我们最终要求解的词向量; b{i} 和 和 \tilde{b}{j} 分 别 是 两 个 词 向 量 的 b i a s t e r m 那 它 到 底 是 怎 么 来 的 , 为 什 么 要 使 用 这 个 公 式 ? 为 什 么 要 构 造 两 个 词 向 量 分别是两个词向量的bias term 那它到底是怎么来的,为什么要使用这个公式?为什么要构造两个词向量 biasterm使 w{i}^{T} $ 和 $ \tilde{w}_{j} $?

有了上述公式之后,我们可以构建Loss function:
J = ∑ i , j = 1 V f ( X i j ) ( w i T w ~ j + b i + b ~ j − log ⁡ ( X i j ) ) 2 J=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log \left(X_{i j}\right)\right)^{2} J=i,j=1Vf(Xij)(wiTw~j+bi+b~jlog(Xij))2
loss function的基本形式就是最简单的mean square loss,只不过在此基础上加了一个权重函数$ f\left(X_{i j}\right) $,那么这个函数起了什么作用,为什么要添加这个函数呢?我们知道在一个语料库中,肯定存在很多单词他们在一起出现的次数是很多的(frequent co-occurrences),那么我们希望:

  • 这些单词的权重要大于那些很少在一起出现的单词,因此这个函数要是非递减函数(non-decreasing);
  • 但这个权重也不能过大,当到达一定程度之后当不再增加;
  • 如果两个单词没有在一起出现,也就是 X i j X_{i j} Xij,那么他们应该不参与到loss function的计算当中去,也就是f(x)要满足f(x)=0

为此,作者提出了以下权重函数:
f ( x ) = { ( x / x max ⁡ ) α  if  x < x max  1  otherwise  f(x)=\left\{\begin{array}{cc} \left(x / x_{\max }\right)^{\alpha} & \text { if } x<x_{\text {max }} \\ 1 & \text { otherwise } \end{array}\right. f(x)={(x/xmax)α1 if x<xmax  otherwise 
实验中作者设定 x max ⁡ = 100 x_{\max }=100 xmax=100,并且发现 α = 3 / 4 \alpha=3 / 4 α=3/4时效果比较好。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值