给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
提示:
- 1 <= k <= nums.length <= 10000
- -10000 <= nums[i] <= 10000
📖 文字题解
-
约定:假设这里数组的长度为 n。
-
题目分析:本题希望我们返回数组排序之后的倒数第 k 个位置。
方法一:基于快速排序的选择方法
思路和算法
我们可以用快速排序来解决这个问题,先对原数组排序,再返回倒数第 kk 个位置,这样平均时间复杂度是 O(n \log n)O(nlogn),但其实我们可以做的更快。
首先我们来回顾一下快速排序,这是一个典型的分治算法。我们对数组 a[l \cdots r]a[l⋯r] 做快速排序的过程是(参考《算法导论》):
- 分解: 将数组 a[l⋯r] 「划分」成两个子数组a[l⋯q−1]、a[q+1⋯r],使得 a[l⋯q−1] 中的每个元素小于等于 a[q],且 a[q] 小于等于a[q+1⋯r] 中的每个元素。其中,计算下标 q 也是「划分」过程的一部分。
- 解决: 通过递归调用快速排序,对子数组 a[l⋯q−1] 和 a[q+1⋯r] 进行排序。
- 合并: 因为子数组都是原址排序的,所以不需要进行合并操作,a[l⋯r] 已经有序。
- 上文中提到的 「划分」 过程是:从子数组 a[l⋯r] 中选择任意一个元素 x作为主元,调整子数组的元素使得左边的元素都小于等于它,右边的元素都大于等于它, x的最终位置就是 q。
由此可以发现每次经过「划分」操作后,我们一定可以确定一个元素的最终位置,即 x 的最终位置为 q,并且保证 a[l⋯q−1] 中的每个元素小于等于 a[q],且 a[q] 小于等于 a[q+1⋯r] 中的每个元素。所以只要某次划分的 q为倒数第 k 个下标的时候,我们就已经找到了答案。 我们只关心这一点,至于 a[l⋯q−1] 和 a[q+1⋯r] 是否是有序的,我们不关心。
因此我们可以改进快速排序算法来解决这个问题:在分解的过程当中,我们会对子数组进行划分,如果划分得到的 q 正好就是我们需要的下标,就直接返回a[q];否则,如果 q 比目标下标小,就递归右子区间,否则递归左子区间。这样就可以把原来递归两个区间变成只递归一个区间,提高了时间效率。这就是「快速选择」算法。
我们知道快速排序的性能和「划分」出的子数组的长度密切相关。直观地理解如果每次规模为 nn 的问题我们都划分成 1 和 n−1,每次递归的时候又向n−1 的集合中递归,这种情况是最坏的,时间代价是 O(n ^ 2)。我们可以引入随机化来加速这个过程,它的时间代价的期望是 O(n),证明过程可以参考「《算法导论》9.2:期望为线性的选择算法」。
代码
class Solution {
public:
int quickSelect(vector<int>& a, int l, int r, int index) {
int q = randomPartition(a, l, r);
if (q == index) {
return a[q];
} else {
return q < index ? quickSelect(a, q + 1, r, index) : quickSelect(a, l, q - 1, index);
}
}
inline int randomPartition(vector<int>& a, int l, int r) {
int i = rand() % (r - l + 1) + l;
swap(a[i], a[r]);
return partition(a, l, r);
}
inline int partition(vector<int>& a, int l, int r) {
int x = a[r], i = l - 1;
for (int j = l; j < r; ++j) {
if (a[j] <= x) {
swap(a[++i], a[j]);
}
}
swap(a[i + 1], a[r]);
return i + 1;
}
int findKthLargest(vector<int>& nums, int k) {
srand(time(0));
return quickSelect(nums, 0, nums.size() - 1, nums.size() - k);
}
};
复杂度分析
时间复杂度:O(n),如上文所述,证明过程可以参考「《算法导论》9.2:期望为线性的选择算法」。
空间复杂度:O(logn),递归使用栈空间的空间代价的期望为O(logn)。