背包问题总结

1. 01背包

关于常数优化:

for (int i = 1; i <= n; i++) {
    int bound = max(V - sum{c[i + 1]...c[n]}, c[i]);
    for (int j = V; j >= bound, j--)
        f[j] = max(f[j], f[j - c[i]] + w[i]);
}

由转移方程f[i][j]=max(f[i−1][j],f[i−1][j−c[i]]+w[i])
可知,要得到最后的f[n][V], 只需要已知f[n - 1][V] 和 f[n - 1][V - c[n]]
对于更靠左的f[n - 1][V - c[n]], 递推可知需已知f[n - 2][V - c[n] - c[n - 1]]
… 所以对于第i次,背包容量为j时,只需要从右到左更新到f[i][V - sum{c[i + 1], c[i + 2], … c[n]}] 即可。这样的状态足够后续使用了,对于j更小的状态在后续中不会使用。

2. 完全背包

3. 多重背包

有N种物品和一个容量为V的背包。第i种物品最多有p [ i ]件可用,每件费用是c [ i ],价值是w [ i ]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

f[i][j]=max(f[i−1][j−k∗c[i]]+k∗w[i])0≤k≤p[i]

转化为01背包:
不是一个一个地加,而是成倍增长。

for (int i = 1; i <= n; i++) {
    int num = min(p[i], V / c[i]); // V/c[i]是最多能放多少个进去,优化上界
    for (int k = 1; num > 0; k <<= 1) { //这里的k就相当于上面例子中的1,2,4,6
        if (k > num) k = num;
        num -= k;
        for (int j = V; j >= c[i] * k; j--) // 01背包
            f[j] = max(f[j], f[j - c[i] * k] + w[i] * k);
    }
}

注:在每次k的循环中,j为逆序,j的下界变成c[i] * k。这是因为k是二倍增长,如果容量j不能放下k个c[i],这种情况一定已经被之前的某种情况所包含,不必更新。例如k = 8,则之前k分别等于1,2,4,之前一定有一种情况将0k 到 7(1 + 2 + 4)k这几种情况都包含了,所以小于8k的情况不用考虑了。

参考文章:https://blog.csdn.net/yandaoqiusheng/article/details/84782655/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值