Machine Learning Yearning1~14

1.测试数据尽量和要应用的数据分布吻合,这可能和训练数据分布不吻合;尽可能的使得dev 和 test sets的分布相同。
2.如果我们的算法要应用到特定的领域,dev和test sets的分布最好是相同的。
3. dev和test sets的大小要基于模型来定。通过dev和test sets评估不同模型的差异,如果模型差异越小,所需数据量越大。
4.确定一个单值的评价标准(比如accuracy)。如果一个评价标准有几个评价值,有时会很难确定一个明确的好的模型。比如,Precision和Recall。如果一定要通过Precision和Recall来评价,那么可以结合为一个值来评价,比如F1 score,或者进行平均,加权平均。
5.还有一种方法,先确定一个(或者剩余一个)评价标准的范围,在这个范围选取最好的另一个(剩余的那个)评价标准。
6.建立一个机器学习系统的过程为:

在这个过程中,需要dev set和评价标准来确定每个想法的优劣(使得实验向着正确的方向进行,哪个想法的提升明显),从而加快这个循环。
7.有时后,初始化的dev set和评价标准不适用了,这时候我们需要改变dev set和评价标准。主要有三个原因造成dev set和评价标准的不适用:a,实际应用的数据分布和dev set的分布不同;b,不断的使用同样的dev set评估模型,会导致模型在dev set上‘过拟合’。我们得根据情况更改dev set。不要使用测试集做任何决定(比如测试集效果不好,决定回滚模型)。否则测试集和dev set一样,可能导致‘过拟合’;c,根据需要更改评价标准。
8.训练集和测试集比例不一定是7:3,如果数据量多的化,测试集比列可以少于3成。
9. dev set数量要足够,一定要能够检测出模型的有意义的变化;测试数据也要足够的大,能够给我们的系统一个准确的评估。
10.如果是开发应用,不要一开始试图设计最完美的系统,相反的是,要快速的设计和训练一个基本的系统,因为检验系统的基本功能是有价值的,这样会找到值得投入时间的方向。这个和像发表学术论文是不同的。
11.如果有一个想法,需要个把月时间,可能会提高结果,那么我们是否需要投入时间?我们可以这么做:a,收集一些系统分错的样本;b,计算想要减少错分类别的错分比例。这个观察错分样本的过程叫做error analysis。如果这个类别错分的比例本身就很小,那么即使再提高,也不性价比也不高。但是如果这个类别错分比例较高的话,我们有理由相信提高这个类别的准确率能够对系统有较大的提升。所以说,一定要分析一下,目标是不是值得花费大的精力。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Table of Contents (draft) Why Machine Learning Strategy 4 ........................................................................................... How to use this book to help your team 6 ................................................................................ Prerequisites and Notation 7 .................................................................................................... Scale drives machine learning progress 8 ................................................................................ Your development and test sets 11 ............................................................................................ Your dev and test sets should come from the same distribution 13 ........................................ How large do the dev/test sets need to be? 15 .......................................................................... Establish a single-number evaluation metric for your team to optimize 16 ........................... Optimizing and satisficing metrics 18 ..................................................................................... Having a dev set and metric speeds up iterations 20 ............................................................... When to change dev/test sets and metrics 21 .......................................................................... Takeaways: Setting up development and test sets 23 .............................................................. Build your first system quickly, then iterate 25 ........................................................................ Error analysis: Look at dev set examples to evaluate ideas 26 ................................................ Evaluate multiple ideas in parallel during error analysis 28 ................................................... If you have a large dev set, split it into two subsets, only one of which you look at 30 ........... How big should the Eyeball and Blackbox dev sets be? 32 ...................................................... Takeaways: Basic error analysis 34 .......................................................................................... Bias and Variance: The two big sources of error 36 ................................................................. Examples of Bias and Variance 38 ............................................................................................ Comparing to the optimal error rate 39 ................................................................................... Addressing Bias and Variance 41 .............................................................................................. Bias vs. Variance tradeoff 42 ..................................................................................................... Techniques for reducing avoidable bias 43 .............................................................................. Techniques for reducing Variance 44 ....................................................................................... Error analysis on the training set 46 ........................................................................................ Diagnosing bias and variance: Learning curves 48 ................................................................. Plotting training error 50 .......................................................................................................... Interpreting learning curves: High bias 51 ............................................................................... Interpreting learning curves: Other cases 53 .......................................................................... Plotting learning curves 55 ....................................................................................................... Why we compare to human-level performance 58 .................................................................. How to define human-level performance 60 ........................................................................... Surpassing human-level performance 61 ................................................................................ Why train and test on different distributions 63 ...................................................................... Page!2 Machine Learning Yearning-Draft V0.5 Andrew NgWhether to use all your data 65 ................................................................................................ Whether to include inconsistent data 67 .................................................................................. Weighting data 68 .................................................................................................................... Generalizing from the training set to the dev set 69 ................................................................ Addressing Bias and Variance 71 ............................................................................................. Addressing data mismatch 72 ................................................................................................... Artificial data synthesis 73 ........................................................................................................ The Optimization Verification test 76 ...................................................................................... General form of Optimization Verification test 78 ................................................................... Reinforcement learning example 79 ......................................................................................... The rise of end-to-end learning 82 ........................................................................................... More end-to-end learning examples 84 .................................................................................. Pros and cons of end-to-end learning 86 ................................................................................ Learned sub-components 88 .................................................................................................... Directly learning rich outputs 89 .............................................................................................. Error Analysis by Parts 93 ....................................................................................................... Beyond supervised learning: What’s next? 94 ......................................................................... Building a superhero team - Get your teammates to read this 96 ........................................... Big picture 98 ............................................................................................................................ Credits 99

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值