Machine Learning Yearning20~22

1.即使是所有的数据都是相同的分布,训练数据越多也不一定会得到想象的提高。那么我们啥时决定增加数据呢?机器学习里边误差主要来源两个方面:bias 和variance。明白这两个概念能够帮助我们,是否是通过增加数据还是和其它策略一起来提高网络的效果。
比如我们现在的算法,在训练集和测试集的error分别为15%,16%,我们想要达到5%的error。这时增加数据会使得更难达到我们需要的结果。这时,我们需要做的是提高训练集的效果,一般来说测试集效果没有训练集好,在训练集效果较差的情况下,测试集效果好不到哪儿。
先来说说什么是bias 和variance。对于测试集(16%的error),其中15%是和训练集相同,我们称这部分误差为bias;剩下的1%便是variance,表示比训练集效果差1%。通俗的说:bias是我们的算法在训练集上的误差,variance是测试集误差比训练集误差差多少。
2.那么我们是提高bias还是variance?我们的bias说的是训练集的error。那么我们的bias其实是和一个optimal error来比较的。比如:optimal error可以是人类的error。相对于optimal error,算法在训练集的表现才有bias。如果optimal error和bias相差很大,说明我们需要提高bias了。但是如果本身optimal error就很大,bias也很大,但是和optimal error差不多,这时是提高bias不是一个好的选择。举个例子:比如人对某一个事物的分辨能力的误差为15%,那么16%的训练误差其实还可以,虽然单看16%比较大。也就是说,optimal error能够指导我们的下一步计划。在统计领域,optimal error被称为Bayes error rate或者Bayes Rate。所以说,我们需要大概估计optimal error。

Table of Contents (draft) Why Machine Learning Strategy 4 ........................................................................................... How to use this book to help your team 6 ................................................................................ Prerequisites and Notation 7 .................................................................................................... Scale drives machine learning progress 8 ................................................................................ Your development and test sets 11 ............................................................................................ Your dev and test sets should come from the same distribution 13 ........................................ How large do the dev/test sets need to be? 15 .......................................................................... Establish a single-number evaluation metric for your team to optimize 16 ........................... Optimizing and satisficing metrics 18 ..................................................................................... Having a dev set and metric speeds up iterations 20 ............................................................... When to change dev/test sets and metrics 21 .......................................................................... Takeaways: Setting up development and test sets 23 .............................................................. Build your first system quickly, then iterate 25 ........................................................................ Error analysis: Look at dev set examples to evaluate ideas 26 ................................................ Evaluate multiple ideas in parallel during error analysis 28 ................................................... If you have a large dev set, split it into two subsets, only one of which you look at 30 ........... How big should the Eyeball and Blackbox dev sets be? 32 ...................................................... Takeaways: Basic error analysis 34 .......................................................................................... Bias and Variance: The two big sources of error 36 ................................................................. Examples of Bias and Variance 38 ............................................................................................ Comparing to the optimal error rate 39 ................................................................................... Addressing Bias and Variance 41 .............................................................................................. Bias vs. Variance tradeoff 42 ..................................................................................................... Techniques for reducing avoidable bias 43 .............................................................................. Techniques for reducing Variance 44 ....................................................................................... Error analysis on the training set 46 ........................................................................................ Diagnosing bias and variance: Learning curves 48 ................................................................. Plotting training error 50 .......................................................................................................... Interpreting learning curves: High bias 51 ............................................................................... Interpreting learning curves: Other cases 53 .......................................................................... Plotting learning curves 55 ....................................................................................................... Why we compare to human-level performance 58 .................................................................. How to define human-level performance 60 ........................................................................... Surpassing human-level performance 61 ................................................................................ Why train and test on different distributions 63 ...................................................................... Page!2 Machine Learning Yearning-Draft V0.5 Andrew NgWhether to use all your data 65 ................................................................................................ Whether to include inconsistent data 67 .................................................................................. Weighting data 68 .................................................................................................................... Generalizing from the training set to the dev set 69 ................................................................ Addressing Bias and Variance 71 ............................................................................................. Addressing data mismatch 72 ................................................................................................... Artificial data synthesis 73 ........................................................................................................ The Optimization Verification test 76 ...................................................................................... General form of Optimization Verification test 78 ................................................................... Reinforcement learning example 79 ......................................................................................... The rise of end-to-end learning 82 ........................................................................................... More end-to-end learning examples 84 .................................................................................. Pros and cons of end-to-end learning 86 ................................................................................ Learned sub-components 88 .................................................................................................... Directly learning rich outputs 89 .............................................................................................. Error Analysis by Parts 93 ....................................................................................................... Beyond supervised learning: What’s next? 94 ......................................................................... Building a superhero team - Get your teammates to read this 96 ........................................... Big picture 98 ............................................................................................................................ Credits 99
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值