python监听麦克风并调用阿里云的实时语音转文字

import time
import threading
import queue
import sounddevice as sd
import numpy as np
import nls
import sys

# 阿里云配置信息
URL = "wss://nls-gateway-cn-shanghai.aliyuncs.com/ws/v1"
TOKEN = "016ca1620aff421da8fac81b9fb52dc5"  # 参考https://help.aliyun.com/document_detail/450255.html获取token
APPKEY = "ahS8ZDaimkpWALHi"  # 获取Appkey请前往控制台:https://nls-portal.console.aliyun.com/applist


# Queue to hold the recorded audio data
audio_queue = queue.Queue()

# Callback function to capture audio data
def audio_callback(indata, frames, time, status):
    if status:
        print(status, file=sys.stderr)
    audio_queue.put(indata.copy())

class RealTimeSpeechRecognizer:
    def __init__(self, url, token, appkey):
        self.url = url
        self.token = token
        self.appkey = appkey
        self.transcriber = None
        self.__initialize_transcriber()

    def __initialize_transcriber(self):
        self.transcriber = nls.NlsSpeechTranscriber(
            url=self.url,
            token=self.token,
            appkey=self.appkey,
            on_sentence_begin=self.on_sentence_begin,
            on_sentence_end=self.on_sentence_end,
            on_start=self.on_start,
            on_result_changed=self.on_result_changed,
            on_completed=self.on_completed,
            on_error=self.on_error,
            on_close=self.on_close,
            callback_args=[self]
        )
        self.transcriber.start(aformat="pcm", enable_intermediate_result=True,
                               enable_punctuation_prediction=True, enable_inverse_text_normalization=True)

    def send_audio(self, audio_data):
        if self.transcriber:
            self.transcriber.send_audio(audio_data)

    def stop_transcription(self):
        if self.transcriber:
            self.transcriber.stop()

    def on_sentence_begin(self, message, *args):
        print("Sentence begin: {}".format(message))

    def on_sentence_end(self, message, *args):
        print("Sentence end: {}".format(message))

    def on_start(self, message, *args):
        print("Start: {}".format(message))

    def on_result_changed(self, message, *args):
        print("Result changed: {}".format(message))

    def on_completed(self, message, *args):
        print("Completed: {}".format(message))

    def on_error(self, message, *args):
        print("Error: {}".format(message))

    def on_close(self, *args):
        print("Closed: {}".format(args))

# 调用阿里云的语音转文字的接口
def recognize_speech(audio_data, recognizer):
    audio_data = np.concatenate(audio_data)
    recognizer.send_audio(audio_data.tobytes())

# Start the audio stream and process audio data
def start_audio_stream(recognizer):
    with sd.InputStream(callback=audio_callback, channels=1, samplerate=16000, dtype='int16'):
        print("Recording audio... Press Ctrl+C to stop.")
        audio_buffer = []
        try:
            while True:
                while not audio_queue.empty():
                    audio_buffer.append(audio_queue.get())
                if len(audio_buffer) >= 10:  # 调整音频数据块大小
                    audio_data = np.concatenate(audio_buffer)
                    recognize_speech(audio_data, recognizer)
                    audio_buffer = []  # Clear buffer after sending
                time.sleep(0.1)
        except KeyboardInterrupt:
            print("Stopping audio recording.")
            recognizer.stop_transcription()

if __name__ == "__main__":
    recognizer = RealTimeSpeechRecognizer(URL, TOKEN, APPKEY)
    start_audio_stream(recognizer)

这段代码实现了一个实时语音转文字系统,使用阿里云的语音转文字服务 (NlsSpeechTranscriber) 来处理从麦克风捕获的音频数据。以下是代码的详细解释:

主要模块和库

  • timethreading:用于处理时间和多线程。
  • queue:用于实现线程间通信的队列。
  • sounddevice (sd):用于从麦克风捕获音频数据。
  • numpy (np):用于处理音频数据数组。
  • nls:阿里云的语音服务库。
  • sys:用于处理系统相关的操作,如错误输出。

阿里云配置信息

URL = "wss://nls-gateway-cn-shanghai.aliyuncs.com/ws/v1"
TOKEN = "016ca1620aff421da8fac81b9fb52dc5"
APPKEY = "ahS8ZDaimkpWALHi"

这些变量存储了阿里云语音服务的配置信息,包括服务的 URL、令牌(TOKEN)和应用密钥(APPKEY)。

音频数据队列

audio_queue = queue.Queue()

用于存储从麦克风捕获的音频数据。

音频数据回调函数

def audio_callback(indata, frames, time, status):
    if status:
        print(status, file=sys.stderr)
    audio_queue.put(indata.copy())

这个回调函数会在音频数据可用时被调用,将捕获到的音频数据复制到队列 audio_queue 中。

RealTimeSpeechRecognizer 类

class RealTimeSpeechRecognizer:
    def __init__(self, url, token, appkey):
        self.url = url
        self.token = token
        self.appkey = appkey
        self.transcriber = None
        self.__initialize_transcriber()

初始化函数,接收 URL、TOKEN 和 APPKEY,并调用内部函数 __initialize_transcriber 初始化语音转文字服务。

def __initialize_transcriber(self):
    self.transcriber = nls.NlsSpeechTranscriber(
        url=self.url,
        token=self.token,
        appkey=self.appkey,
        on_sentence_begin=self.on_sentence_begin,
        on_sentence_end=self.on_sentence_end,
        on_start=self.on_start,
        on_result_changed=self.on_result_changed,
        on_completed=self.on_completed,
        on_error=self.on_error,
        on_close=self.on_close,
        callback_args=[self]
    )
    self.transcriber.start(aformat="pcm", enable_intermediate_result=True,
                           enable_punctuation_prediction=True, enable_inverse_text_normalization=True)

初始化语音转文字服务并配置相关回调函数。

def send_audio(self, audio_data):
    if self.transcriber:
        self.transcriber.send_audio(audio_data)

def stop_transcription(self):
    if self.transcriber:
        self.transcriber.stop()

用于发送音频数据到阿里云并停止转录。

回调函数

def on_sentence_begin(self, message, *args):
    print("Sentence begin: {}".format(message))

def on_sentence_end(self, message, *args):
    print("Sentence end: {}".format(message))

def on_start(self, message, *args):
    print("Start: {}".format(message))

def on_result_changed(self, message, *args):
    print("Result changed: {}".format(message))

def on_completed(self, message, *args):
    print("Completed: {}".format(message))

def on_error(self, message, *args):
    print("Error: {}".format(message))

def on_close(self, *args):
    print("Closed: {}".format(args))

这些函数在语音转文字服务的不同事件发生时被调用,打印相关信息。

处理音频数据

def recognize_speech(audio_data, recognizer):
    audio_data = np.concatenate(audio_data)
    recognizer.send_audio(audio_data.tobytes())

将音频数据连接成一个数组并发送给阿里云语音转文字服务。

开始音频流并处理音频数据

def start_audio_stream(recognizer):
    with sd.InputStream(callback=audio_callback, channels=1, samplerate=16000, dtype='int16'):
        print("Recording audio... Press Ctrl+C to stop.")
        audio_buffer = []
        try:
            while True:
                while not audio_queue.empty():
                    audio_buffer.append(audio_queue.get())
                if len(audio_buffer) >= 10:  # 调整音频数据块大小
                    audio_data = np.concatenate(audio_buffer)
                    recognize_speech(audio_data, recognizer)
                    audio_buffer = []  # Clear buffer after sending
                time.sleep(0.1)
        except KeyboardInterrupt:
            print("Stopping audio recording.")
            recognizer.stop_transcription()

这个函数打开音频输入流,开始录音并处理音频数据,将其发送到阿里云进行转录。当用户按下 Ctrl+C 时,停止录音并结束转录。

主程序入口

if __name__ == "__main__":
    recognizer = RealTimeSpeechRecognizer(URL, TOKEN, APPKEY)
    start_audio_stream(recognizer)

创建一个 RealTimeSpeechRecognizer 实例并开始录音和处理音频数据。

通过这些步骤,代码实现了从麦克风捕获音频数据并实时发送到阿里云进行语音转文字的功能。

### Python 实现实时语音识别换为文字 为了实现Python中的实时语音识别将其换为文字,可以采用多种方法和技术栈。通常情况下,这涉及到安装特定的库来处理音频输入以及调用能够解析这些音频数据的服务或算法。 对于开发环境准备而言,确保已安装了必要的依赖项[^1]。例如`pyaudio`用于捕捉麦克风输入;而像`speechrecognition`这样的软件包则提供了访问不同在线和离线引擎的能力,从而完成从声音到文本的变过程。 下面是利用 `speech_recognition` 库的一个简单例子: ```python import speech_recognition as sr def recognize_speech_from_mic(): recognizer = sr.Recognizer() with sr.Microphone() as source: print("请说话...") audio_data = recognizer.listen(source, timeout=5) try: text = recognizer.recognize_google(audio_data, language="zh-CN") # 使用Google Web API进行中文识别 print(f"你说的是: {text}") return text except sr.UnknownValueError: print("无法理解音频") except sr.RequestError as e: print(f"请求错误; {e}") if __name__ == "__main__": while True: recognized_text = recognize_speech_from_mic() if recognized_text is not None and "停止" in recognized_text: break ``` 此脚本会持续监听用户的语音指令直到听到“停止”。它通过连接至 Google 的网络服务来进行实际的语言处理工作[^2]。需要注意的是,在生产环境中部署此类应用时可能要考虑隐私政策和服务条款等问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MonkeyKing.sun

对你有帮助的话,可以打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值