/*
求2^t<=(x+d)mod 2^(t+1)<2^(t+1)的x个数
分类 当 2^t<=x+d<2^(t+1) 和2^t+2^(t+1)<=(x+d)<2^(t+2)两类
(转http://blog.sina.com.cn/s/blog_82061db90100uq0d.html)
题意是给以一串短整数,然后有一连串的操作,分别为1.把所有的整数都加上某一个值,
如果大于2^16-1就取模。2.查询有多少个数满足二进制的第t位为1。这个题目还是有一点难度的,
不过我原来在某大神的blog上看过这个题目的分析,所以马上就回忆起来了,做法也很清晰:对与加法操作,
只需要另外记录下来就行了。对于查询操作,开16个树状树组,然后对于每一个整数,把它的二进制划分16次分别放到16个树状数组中,
比如对于11是1011,我把1放到第0个树状数组里,11放到第1个树状数组里,011放到第2个,1011放到第3个,01011放到第4个,
依此类推。然后对于每个询问t,只要找第t个树状数组中,满足2^t<=(x+d)mod 2^(t+1)<2^t+1的数的个数,
这个方程可以解出两个区间来,然后区间求和,就是树转数组的强项了。
*/
#include<stdio.h>
#include<string.h>
typedef __int64 lld;
const int maxn=65536;
const int mod=65536;
const int M=16;
int n;
lld m;
int C[M][maxn+10];
char ch[M];
void add(int id,int x,int v){
if(x==0){
C[id][x]++;
return ;
}
for(int i=x;i<maxn;i+=i&(-i))
C[id][i]+=v;
}
int sum(int id,int x){
if(x<0)return 0;
int ret=C[id][0];
for(int i=x;i>0;i-=i&(-i))
ret+=C[id][i];
return ret;
}
int main(){
int l,r;
int i,j,k;
int cas=1;
while(scanf("%d",&n)!=EOF && n!=-1){
memset(C,0,sizeof(C));
for(i=1;i<=n;i++){
scanf("%I64d",&m);
for(j=0;j<M;j++){
add(j,m&((1<<(j+1))-1),1);
}
}
lld Jia=0,ans=0;
while(scanf("%s",ch)!=EOF && ch[0]!='E'){
scanf("%I64d",&m);
if(ch[0]=='C'){
Jia=(Jia+m)%mod;
}else{
lld tp=Jia%(1<<(m+1));
l=(1<<m)-tp-1;
r=(1<<(m+1))-tp-1;
ans+=sum(m,r)-sum(m,l);
l=(1<<m)+(1<<(m+1))-tp-1;
r=(1<<(m+2))-tp-1;
if(l< (1<<(m+1))){
if(r>((1<<(m+1))-1))
r=((1<<(m+1))-1);
ans+=sum(m,r)-sum(m,l);
}
}
}
printf("Case %d: %I64d\n",cas++,ans);
}
return 0;
}
A Sequence of Numbers HDU
最新推荐文章于 2020-10-11 15:32:27 发布