A Sequence of Numbers HDU

/*
求2^t<=(x+d)mod 2^(t+1)<2^(t+1)的x个数
分类 当 2^t<=x+d<2^(t+1) 和2^t+2^(t+1)<=(x+d)<2^(t+2)两类

(转http://blog.sina.com.cn/s/blog_82061db90100uq0d.html)
题意是给以一串短整数,然后有一连串的操作,分别为1.把所有的整数都加上某一个值,
如果大于2^16-1就取模。2.查询有多少个数满足二进制的第t位为1。这个题目还是有一点难度的,
不过我原来在某大神的blog上看过这个题目的分析,所以马上就回忆起来了,做法也很清晰:对与加法操作,
只需要另外记录下来就行了。对于查询操作,开16个树状树组,然后对于每一个整数,把它的二进制划分16次分别放到16个树状数组中,
比如对于11是1011,我把1放到第0个树状数组里,11放到第1个树状数组里,011放到第2个,1011放到第3个,01011放到第4个,
依此类推。然后对于每个询问t,只要找第t个树状数组中,满足2^t<=(x+d)mod 2^(t+1)<2^t+1的数的个数,
这个方程可以解出两个区间来,然后区间求和,就是树转数组的强项了。

  */
#include<stdio.h>
#include<string.h>

typedef __int64 lld;
const int maxn=65536;
const int mod=65536;
const int M=16;
int n;
lld m;
int C[M][maxn+10];
char ch[M];

void add(int id,int x,int v){
	if(x==0){
		C[id][x]++;
		return ;
	}
	for(int i=x;i<maxn;i+=i&(-i))
		C[id][i]+=v;
}

int sum(int id,int x){
	if(x<0)return 0;
	int ret=C[id][0];
	for(int i=x;i>0;i-=i&(-i))
		ret+=C[id][i];
	return ret;
}

int main(){
	int l,r;
	int i,j,k;
	int cas=1;
	while(scanf("%d",&n)!=EOF && n!=-1){
		memset(C,0,sizeof(C));
		for(i=1;i<=n;i++){
			scanf("%I64d",&m);
			for(j=0;j<M;j++){
				add(j,m&((1<<(j+1))-1),1);
			}
		}
		lld Jia=0,ans=0;
		while(scanf("%s",ch)!=EOF && ch[0]!='E'){
			scanf("%I64d",&m);
			if(ch[0]=='C'){
				Jia=(Jia+m)%mod;
			}else{
				lld tp=Jia%(1<<(m+1));
				l=(1<<m)-tp-1;
				r=(1<<(m+1))-tp-1;
				ans+=sum(m,r)-sum(m,l);
				l=(1<<m)+(1<<(m+1))-tp-1;
				r=(1<<(m+2))-tp-1;
				if(l< (1<<(m+1))){
					if(r>((1<<(m+1))-1))
						r=((1<<(m+1))-1);
					ans+=sum(m,r)-sum(m,l);
				}
			}
		}
		printf("Case %d: %I64d\n",cas++,ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值