Robot HDU - 4576

点击打开链接

概率DP裸题 n*m暴力可过 见代码一

但是存在优化的方法 可以发现w很小 也就是步数的种类很小 又因为只要各种步子迈的次数一样 最后到达每个点的概率都是一样的 就像1-2和-2+1结果一样是一个道理 所以对步数排序 每种步子分别处理

在暴力DP的过程中 有如下转移式子 dp[cur^1][(i-w+n)%n]+=0.5*dp[cur][i]; dp[cur^1][(i+w)%n]+=0.5*dp[cur][i]; 这个式子代表在第i步到第i+1步时的转移状态 其实可以发现 如果如果从第i步转移到第k步时 也存在类似的递推关系 即只要知道走完k步时到达每一点的概率即可 然后用类似快速幂的方法优化

 

#include <bits/stdc++.h>
using namespace std;
const int maxn=2e2+10;

double dp[2][maxn];
int n,m,l,r;

int main()
{
    double ans;
    int i,cur,w;
    while(scanf("%d%d%d%d",&n,&m,&l,&r)!=EOF){
        if(n==0&&m==0&&l==0&&r==0) break;
        l--,r--;
        for(i=0;i<n;i++){
            dp[0][i]=dp[1][i]=0.0;
        }
        dp[0][0]=1.0;
        cur=0;
        while(m--){
            scanf("%d",&w);
            for(i=0;i<n;i++){
                if(dp[cur][i]>0.0){
                    dp[cur^1][(i-w+n)%n]+=0.5*dp[cur][i];
                    dp[cur^1][(i+w)%n]+=0.5*dp[cur][i];
                    dp[cur][i]=0.0;
                }
            }
            cur^=1;
        }
        ans=0.0;
        for(i=l;i<=r;i++){
            ans+=dp[cur][i];
        }
        printf("%.4f\n",ans);
    }
    return 0;
}

 

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

double ans[210],mat[210];
int book[110];
int n,m,l,r;

void mul(double *a,double *b)
{
    double c[210];
    int i,j;
    memset(c,0,sizeof(c));
    for(i=0;i<n;i++)
    {
        for(j=0;j<n;j++)
        {
            c[i]+=a[j]*b[j>=i?(j-i):(n+j-i)];
        }
    }
    memcpy(a,c,sizeof(c));
    return;
}

int main()
{
    double sum;
    int w,t,i,j;
    while(scanf("%d%d%d%d",&n,&m,&l,&r)!=EOF)
    {
        if(n==0&&m==0&&l==0&&r==0) break;
        memset(book,0,sizeof(book));
        while(m--)
        {
            scanf("%d",&w);
            book[w]++;
        }
        memset(ans,0,sizeof(ans));
        ans[0]=1.0;
        for(i=1;i<=100;i++)
        {
            if(book[i]>0)
            {
                t=book[i];
                memset(mat,0,sizeof(mat));
                mat[i%n]+=0.5,mat[(-i%n+n)%n]+=0.5;
                while(t>0)
                {
                    if(t%2)
                    {
                        mul(ans,mat);
                    }
                    mul(mat,mat);
                    t/=2;
                }
            }
        }
        sum=0;
        for(i=l-1;i<=r-1;i++)
        {
            sum+=ans[i];
        }
        printf("%.4f\n",sum);
    }
    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值