线性神经网络的训练算法,神经网络理论预测模型

本文探讨了利用RBF神经网络进行预测的方法,包括GRNN的使用及其优势,解释了神经网络如何解决线性规划问题和进行预估。此外,还对比了BP神经网络与多元线性回归预测,并阐述了神经网络采用非线性函数的原因。最后,介绍了神经网络的学习算法,特别是反向传播(BP)算法的工作原理和步骤。
摘要由CSDN通过智能技术生成

利用RBF神经网络做预测

在命令栏敲nntool,按提示操作,将样本提交进去。还有比较简单的是用广义RBF网络,直接用grnn函数就能实现,基本形式是y=grnn(P,T,spread),你可以用help grnn看具体用法。

GRNN的预测精度是不错的。广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。

从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。

注意广义RBF网络只要求隐藏层神经元个数大于输入层神经元个数,并没有要求等于输入样本个数,实际上它比样本数目要少得多。

因为在标准RBF网络中,当样本数目很大时,就需要很多基函数,权值矩阵就会很大,计算复杂且容易产生病态问题。

另外广RBF网与传统RBF网相比,还有以下不同:1.径向基函数的中心不再限制在输入数据点上,而由训练算法确定。2.各径向基函数的扩展常数不再统一,而由训练算法确定。

3.输出函数的线性变换中包含阈值参数,用于补偿基函数在样本集上的平均值与目标值之间的差别。

因此广义RBF网络的设计包括:1.结构设计--隐藏层含有几个节点合适2.参数设计--各基函数的数据中心及扩展常数、输出节点的权值。

谷歌人工智能写作项目:神经网络伪原创

神经网络算法可以解决线性规划问题吗

理论上可以的 但是个人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值