matlab神经网络43个案例分析第十七章基于SVM的信息粒化运行问题
代码你修改过吗,没有修改过、用的又是原版的SVMLIM工具箱的话,运行应该是无错的,因为所有的案例代码都经过校正。
维数不一致,可能是指low_predict 和Low'的维度不一致,或者是error矩阵的维数设置错了。
SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而 使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。
谷歌人工智能写作项目:神经网络伪原创
MATLAB神经网络30个案例分析的图书目录
第1章 P神经网络的数据分类——语音特征信号分类第2章 BP神经网络的非线性系统建模——非线性函数拟合第3章 遗传算法优化BP神经网络——非线性函数拟合第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模第6章 PID神经元网络解耦控制算法——多变量系统控制第7章 RBF网络的回归——非线性函数回归的实现第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测第9章 离散Hopfield神经网络的联想记忆——数字识别第10章 离散Hopfield神经网络的分类——高校科研能力评价第11章 连续Hopfield神经网络的优化——旅行商问题优化计算第12章 SVM的数据分类预测——意大利葡萄酒种类识别第13章 SVM的参数优化——如何更好的提升分类器的性能第14章 SVM的回归预测分析——上证指数开盘指数预测第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测