《DeepWalk: Online Learning of Social Representations》阅读笔记

论文提出了一个新颖的图节点隐义表示学习方法:DeepWalk。DeepWalk使用随机游走的方法获取图节点的局部信息,然后将随机游走的结果当做句子一样学习隐义表示。输入是图,输出是图节点的向量表示在这里插入图片描述

random walks

随机游走的作用就是获取图中节点的局部邻接结构信息。
我们都知道,自然语言模型的目标就是求指定句子的最大似然估计。比如给定一个句子: W 1 n = ( w 0 , w 1 , . . . , w n ) W_1^n=(w_0,w_1,...,w_n) W1n=(w0,w1,...,wn)其中 w i w_i wi为语料库中的词,语言模型需要得到 P r ( w n ∣ w 0 , w 1 , . . . , w n − 1 ) Pr(w_n|w_0,w_1,...,w_{n-1}) Pr(wnw0,w1,...,wn1)的最大情况。
随机游走则是通过短距离游走获取节点局部的结构信息,借鉴语言模型的最大似然求解 P r ( v i ∣ ( v 1 , v 2 , . . . , v i − 1 ) )          ( 式 1 ) Pr(v_i|(v_1,v_2,...,v_{i-1}))\space\space\space\space\space\space\space\space(式1) Pr(vi(v1,v2,...,vi1))        (1)为了更好的表示节点的隐义信息,论文还提出了映射函数 Φ \varPhi Φ,该映射函数表达了节点之间连接关系,上(式1)可以表示为 P r ( v i ∣ ( Φ ( v 1 ) , Φ ( v 2 ) , . . . , Φ ( v i − 1 ) ) )          ( 式 2 ) Pr(v_i|(\varPhi(v_1),\varPhi(v_2),...,\varPhi(v_{i-1})))\space\space\space\space\space\space\space\space(式2) Pr(vi(Φ(v1),Φ(v2),...,Φ(vi1)))        (2)根据词嵌入Skip-gram模型原理,对图节点表示建模优化: min ⁡ Φ − l o g P r ( { v i − w , . . . , v i − 1 , v i + 1 , . . . , v i + w } ∣ Φ ( v i ) ) \min_{\varPhi}-logPr(\{v_{i-w},...,v_{i-1},v_{i+1},...,v_{i+w}\}|\varPhi(v_i)) ΦminlogPr({viw,...,vi1,vi+1,...,vi+w}Φ(vi))语言模型的输入一般有两个:语料库和词库。DeepWalk算法将随机游走得到的节点局部信息作为语料库,将节点 V V V作为词库。
DeepWalk算法分两个过程:一是游走;二是更新。算法伪代码:在这里插入图片描述
第六、七行为算法的核心,分别是在图中进行游走得到结果 W v i W_{v_i} Wvi,然后将得到的结果利用SkipGram算法(如下图)更新节点表示。
在这里插入图片描述
DeepWalk算法思想整体不算太难,主要是运用了语言模型逻辑将图节点通过对图进行游走形成语言模型训练所需要的语料库,而DeepWalk对图的游走策略是随机游走,从节点 v i v_i vi到节点 v j v_j vj的概率是均等的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值