TensorFlow构建模型(Numpy数据加载)八

该文介绍如何利用TensorFlow加载mnist.npz数据集,通过tf.data.Dataset进行数据预处理,包括打乱顺序、批量处理,并构建一个全连接模型进行训练和评估,展示了数据处理和模型构建的基本流程。
摘要由CSDN通过智能技术生成
概要

本文主要讲numpy数据的加载和使用,数据文件的格式.npz

内容
import numpy as np
import tensorflow as tf

DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz'

path = tf.keras.utils.get_file('mnist.npz', DATA_URL)
with np.load(path) as data:
  train_examples = data['x_train']
  train_labels = data['y_train']
  test_examples = data['x_test']
  test_labels = data['y_test']

使用tf.data.Dataset加载Numpy 数组,假设你有一个样本数组和相应的数据标签,你可以将它们组合成元组(tuple)传入到tf.data.Dataset.from_tensor_slices函数来创建一个tf.data.Dataset

train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))

数据的使用

BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 100

train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE)
# 构建一个全连接模型,10分类
model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

model.compile(optimizer=tf.keras.optimizers.RMSprop(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['sparse_categorical_accuracy'])
model.fit(train_dataset, epochs=10)
model.evaluate(test_dataset)
"""
[0.6484134197235107, 0.9531000256538391]
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值