最近很多人对我说,听说数据分析很火,我想要入门数据分析,需要掌握哪些知识、技能和工具呢?数据分析入门之后的进阶路线是怎样的?这个职业的发展前景如何?我现在是产品岗,能转数据分析吗?我是运营岗能转吗?我开发、我设计、我……
今天给大家带来的这篇文章,就是关于数据分析入门需要掌握的知识技能和工具,数据分析师的进阶路线、发展前景、职场小建议等。无论你是想要入门的小白、想要进阶的新人还是想要转行的伙伴,这篇文章将解答你对数据分析的一切疑问!
一、数据分析是什么
为了帮助大家理解数据分析,我们不妨想象一个我们生活中的小例子,医生在给病人看病的时候,总是先进行望闻问切以及各种检查,然后基于检查报告上各项指标的数据才能最终确定到底是哪儿出了问题。其实这就是一个数据分析的过程,我们首先收集各种相关数据,然后基于数据进行分析,最终定位到具体问题。综上,我们用一句话总结数据分析就是收集数据进行分析,从而辅助我们进行决策。
二、我们是谁
借用前 Facebook 数据分析总监宋世君老师的观点:我们是一群在相关量化领域受过专业的训练,并且希望应用自己的量化能力,在数据中挖掘对业务有用的信息,并且通过这些信息为业务发展提供助力但是同时又保持数据的中立性的人。如果我们把时间周期拉长来看,数据分析这个职业并不是一个新兴职业,他其实已经存在了几千年,如果非要选择一个代表人物的话,我觉得非“功盖三分国”的诸葛亮莫属!
在当今大数据时代,数据分析师广泛存在于各类型企业中,几乎可以说是企业标配。我们一般存在于企业的数据中台,或者分布在各个业务条线(产品、运营、市场等)中,通过数据分析为业务方进行赋能。
从横向来看,数据分析师主要分为业务类和技术类,每个类型下的具体划分可以参考下表:
从纵向来看,也就是数据分析师的进阶之路,一般可以分为初级数据分析师、高级数据分析师、数据分析专家、数据科学家,具体的划分依据可以参考下表:
三、我们主要干什么
从宏观层面来讲,我们所做的事情可以总结为三类:描述现状、总结规律、推动改进。
数据分析师大部分时间或者说常态化的工作都是在描述业务现状,因为当我们连客观现状都描述不清楚的时候,是谈不上寻找规律和预测未来,更谈不上推动业务改进的。大部分数据分析师每天大部分的工作都是在取数、做报表、做看板等等。因此很多刚入行不久的数据分析师觉得工作总是在重复,没有什么成就感,很大一部分原因在于我们总是在被动的实现需求,没有把取数或者数据需求和我们所对接的业务主线联系起来,主动的去发现问题,寻找一些规律。这就涉及到我们刚才所说的第二个层面:总结规律。
数据分析核心在于“分析”,通过分析发现问题,并且寻找问题背后隐含的规律。我们平常所说的分析思维和方法、相关分析、因果分析、统计建模、数据挖掘等等其实都是在试图探索一些规律,这些规律就是我们常说的 “洞见”,就是这些 “洞见”往往最能体现一个数据分析师的核心价值。
我们描述现状和寻找规律,终极目的其实是为了推动改进,也就是通过我们的 “洞见”去影响一部分决策。因此,我们应该时刻自省,有没有在以下几个方面产生一些影响,实现作为数据分析师的价值。
从微观层面来讲,我们在日常工作中所做的每一次分析基本包含但不限于以下几个通用环节:
四、我们需要具备哪些能力
这个问题应该是最契合实际也是大家最关心的一个问题。从经济学的角度来讲,供给受需求的影响,因此,这个问题应该从市场需求,也就是数据分析师招聘要求进行分析。下面我们看一个具体的招聘岗位JD:
我们根据岗位JD来逐条分解一下:
-
你要懂业务,这是大前提,没得商量
-
这一条说明,你是为产品业务条线服务的数据分析师
-
你要分析产品中用户行为数据,优化用户生命周期管理,提升用户体验
-
你要懂爬虫
-
你要懂数据挖掘和机器学习的知识
-
你要会做数据报表
-
通过建模等量化手段解决业务问题
这就是一个非常典型的业务型数据分析师的要求:会取数,能利用常用的业务分析模型或统计模型进行量化分析,解决实际业务问题。
因此,根据这些工作要求我们就不难看出一个合格的数据分析师应该具备哪些知识和技能了,我将具体的技能总结为以下几个方面:
最后,希望给大家分享一个自己关于数据分析的理解:数据分析虽然应用了很多技术,但我们不能简单的把他当做一门技术来学,数据分析应该是一种能力、一门艺术。虽然入门门槛低,但是天花板很高,想要做好也很难,不仅要求我们在专业领域内纵深能力很强,同样要求我们具备深厚的知识广度。只有具备这些基础,才能发挥数据分析师天马行空的创造力,真正把数据分析当成一种艺术来做!
关注《知了数据分析》,免费获得数据分析方法论经典书籍!