堆排序的顺序存储

堆排序顺序存储(升序)
㈠ 完全二叉树的概念:前h-1层为满二叉树,最后一层连续缺失右结点!

㈡ 首先堆是一棵全完二叉树:
a:构建一个堆分为两步:⑴创建一棵完全二叉树      ⑵调整为一个堆
(标注:大根堆为升序,小根堆为降序)
   b:算法描述:①创建一棵完全二叉树   
②while(有双亲){
A:调整为大根堆;
B:交换根和叶子结点;
C:砍掉叶子结点;
}
  c:时间复杂度为 O(nlogn)  ,空间复杂度为 O(1), 是不稳定排序!
㈢ 代码实现:
/*堆排序思想:[完全二叉树的定义:前 h-1 层为满二叉树一最后一层连续缺失右结点(即右子女)],(大根堆升序排序,小根堆降序排列) 
	首先堆是一个完全二叉树 ,根据数组下标就可建成了一棵完全二叉树 
	其次:while(有双亲){
		A: 调整为一个大根堆					【Adjust()函数实现】 
		B: 交换最后一个叶子结点和根结点		【Swap()函数实现】 
		C: 砍掉最后一个叶子结点 			【即元素个数 n--】 
	} 
*/

#include <iostream>
#define N 100

using namespace std; 

int b[N]={0};		//存储数据的数组 
int n=0;			//记录数据的总个数【0单元不要,实际元素个数为(n-1)个】

void Swap(int *x,int *y){
	int t;
	t=*x;
	*x=*y;
	*y=t;
} 

void Adjust(){
	int p;					//记录双亲结点 
	int tag=1;				//记录是否已经调整为大根堆(标志性的变量)
	while(tag){				//判断是否已经调整好为大根堆
		p=(n-1)/2;			//最后一个双亲结点的下标
		tag=0;				//凡是交换后,tag=1,标志着还没有调整为大根堆,否则继续调整 
		while(p>0){			//确保有双亲结点
			if(b[p]<b[2*p]){			//若根结点大于左子女结点,就交换 
				Swap(&b[p],&b[2*p]);
				tag=1;
			}
			if(2*p+1<n && b[p]<b[2*p+1]){	//若存在右子女,并且根结点大于右子女结点,就交换 
				Swap(&b[p],&b[2*p+1]);
				tag=1;			
			}
			p--;				//直到最后一个双亲结点调整完 
		} 
	} 
}

void HeapSort(){
	while(n>2){					//保证有双亲结点 
		Adjust();				//调整大根堆函数
		Swap(&b[1],&b[n-1]);	//将最后一个叶子结点和根结点交换 
		n--; 					//裁剪最后的叶子结点 
	}
}	
	 
int main(void){
	int i,m;
	cout<<"请输入数据的总数【0单元不要,实际元素个数为(n-1)个】:"<<endl;
	cin>>n;
	m=n;
	cout<<"请输入各个数据【0单元不要,实际元素个数为(n-1)个】:"<<endl;
	b[0]=0;
	for(i=1;i<n;i++){
		cin>>b[i];
	}
	HeapSort();						//堆排序
	cout<<"大根堆升序排列为:"<<endl;
	for(i=1;i<m;i++){
		cout<<b[i]<<" ";
	} 
	cout<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值