Matlab
superdont
电子工业出版社优秀作者,代表作《OpenCV轻松入门》(累计印刷超过20次),《计算机视觉40例》等。
展开
-
在matlab内绘制函数图像
1 函数图像1 详细情况可参考matlab的帮助文档 对于函数 建立如下,程序: 程序1: function dy = rigid(t,y) dy = zeros(3,1); % a column vector dy(1) = y(2) * y(3); dy(2) = -y(1) * y(3); dy(3) = -0.51 * y(1) * y(2); 程序2: opti原创 2009-12-07 11:16:00 · 10039 阅读 · 1 评论 -
训练前后bp网络仿真结果分析
训练前后bp网络仿真结果分析,代码如下: %%%训练前后bp网络仿真结果分析clc;clear;%设定初始值和终值,终值为一cos序列p=[-1:0.05:1]; t=0:0.314:6.28*2;t=cos(t); %建立相应的BP网络 net=newff(minmax(p),[10,1],{tansig,purelin},trainlm原创 2010-04-20 11:20:00 · 3546 阅读 · 0 评论 -
应用了归一化的预测
应用了归一化的预测,在归一化的过程中使用了premnmx和postmnmx,并在最后给出了这两个函数的应用情况。 %应用了归一化的预测clc;clear;originalData=rands(20,14);inputSampledata=originalData;outputData=rands(20,1);outputSampledata=outputDa原创 2010-04-20 20:54:00 · 3032 阅读 · 0 评论 -
最简单的径向基网络
最简单的径向基网络 %%最简单的径向基网络close allclcx=[-1:0.05:-0.05 0.05:0.05:1];% 扣除‘0’的不可除y=sin(pi*x)./(pi*x);aa=length(x);for i=1:aa for j=1:aa z(i,j)=y(i).*y(j); endend%%%%原创 2010-04-20 21:33:00 · 2146 阅读 · 0 评论 -
RBF预测模型
RBF预测模型 %RBF预测模型t_data=rands(30,6);%初始化数据tt=t_data(:,6);x=t_data(:,1:5);tt=tt;%随机选取中心c=x;%定义delta平方为样本各点的协方差之和delta=cov(x);% 计算协方差% Covariance matrixdelta=sum(delta);原创 2010-04-20 21:50:00 · 6440 阅读 · 0 评论 -
跳出嵌套循环的外部循环
在matlab内,提供了break用于跳出当前循环,如果存在嵌套循环,则也只能够跳出内部循环,如果想一次跳出整个循环,则可以采用如下方式:原创 2010-06-21 20:18:00 · 4699 阅读 · 1 评论 -
图像标注说明系统
<br /> <br /> <br />图像标注说明系统,对图像进行标注说明,即在图像内部嵌入该图像的说明信息。能够在二进制图像,灰度图像,彩色图像内嵌入说明信息。该系统特点在于成功在二进制图像内嵌入说明信息。该系统在彩色图像内能嵌入多个说明信息。<br />系统菜单如下:<br />=================================================================<br /><br />1 标注演示<br />1.1 标注演示<br />1.1.1 正常情况原创 2010-09-14 12:52:00 · 2700 阅读 · 1 评论 -
几个问题
<br /><br />1.某个dialog内的参数名设置为title,导致后来在使用subplot时,title无法正常使用。解决方法,因为dialog不能用保留字作为参数名。<br />2.图像存储后为空白,用imshow显示能正常显示,此时可将文件A,进行运算A=uint8(A).<br />3.bitset(A,bit,b),该函数一直以为是直接用没有返回值,程序始终调试不出来。最后发现,需要有返回值,才能成功设置A。原创 2010-09-14 12:59:00 · 1318 阅读 · 0 评论 -
matlab矩阵学习系统
<br />该系统应用matlab开发,演示matlab常用的矩阵函数。使用者能够通过该系统快速掌握常用矩阵命令,同时因为系统采用matlab开发,使用者能快速掌握命令使用方式。<br />项目开源至:<br /> <br />https://sourceforge.net/projects/mlsys/原创 2010-09-03 16:43:00 · 1697 阅读 · 0 评论 -
生成混沌图像
function gl %生成混沌序列,并生成图像 clear; clc; % o=imread('image/lena.bmp'); %%%%%%%%%%%%读入混沌初始值 prompt={'混沌初始值 '}; mytitle='initial value'; lines=1; def={'98'}; mya=inputdlg(prompt,mytitle,lines,def,'on'); key11=['0.',mya{1}]; key=str2num(key11); %%%%原创 2010-12-16 12:57:00 · 2292 阅读 · 0 评论 -
混沌对图像的置乱
<br /> <br />加密函数:<br /> <br />function myencryption%对图像进行加密,采用置乱的方式clear;clc;%key为加密密钥%os原始图像的路径[filename pathname]=uigetfile('*.bmp;*.tiff;*.tif', '读入需要加密的图像'); os=[pathname filename]; [filename pathname]=uiputfile({'*.bmp';'*.tiff';'*.ti原创 2010-12-16 13:06:00 · 2775 阅读 · 0 评论 -
混沌异或加密演示
function el2%应用混沌序列与原始图像的异或对原始图像进行加密%让图像在不同的窗口显示%直接使用imwrite保存图像,如果利用生成的图像另存为,无论是fig格式,eps格式% 或是bmp格式,均存在很大的白边,在word内处理较麻烦。%修改:20130507%lilizong@gmail.comclear;clc;%需要注意本程序实现对二进制文件的加密,对于非二进制原创 2013-05-07 07:58:59 · 2938 阅读 · 1 评论 -
Matlab读取yahoo股票数据
Matlab读取Yahoo股票数据。原创 2016-12-31 20:33:38 · 16587 阅读 · 2 评论 -
MATLAB自定义求图像边缘
自定义求图像边缘时,可以使用循环实现。其实还有一种方式,就是直接使用数组操作。这种方法处理起来,如下:clc;clear all;o=imread('lena512.bmp');[m,n]=size(o);x=2:m-1;y=2:n-1;key=20;key=20;index=find(abs(o(x,y)-o(x-1,y))<key&abs(o(x,y)-o(x,y-1))<ke原创 2017-03-06 06:54:08 · 8869 阅读 · 0 评论 -
视频帧置乱
视频帧置乱原创 2017-03-26 21:01:26 · 8379 阅读 · 1 评论 -
用BP网络完成函数的逼近
用BP网络完成函数的逼近 ,此处主要为了演示效果,其中部分函数已经废弃。具体如下: % 用BP网络完成函数的逼近 clf reset figure(1) P=-1:.1:1; % T 为目标向量 T=0:0.314:6.28;T=sin(T);plot(P,T,+); title(训练向量); xlabel(输入向量 P);原创 2010-04-20 10:57:00 · 3773 阅读 · 0 评论 -
调整参数对bp网络的影响
调整参数对bp网络的影响,具体如下: clc;clear;x=1:1:79;P=rands(1,79);% T=rands(1,79);T=ones(1,79);net=newff(minmax(P),[25,1],{tansig,purelin},trainlm);net.trainParam.show=50;net.trainPa原创 2010-04-20 10:04:00 · 3614 阅读 · 0 评论 -
Lorenz混沌系统相图
来源: http://blog.csdn.net/superdont 建立函数1: function xdot=lorrenz(t,x) for t=0:0.1:100; if(cos(5.3*t)>=0) p=1; else p=-1; end end xdot=[-8/3*x(1)+p*x(2)*x(3);(-x(2)+x(3))*(25-10*cos(5.3*t));-p原创 2009-12-07 11:20:00 · 11001 阅读 · 1 评论 -
比较线性网络和非线性网络的分类效果
比较线性网络和非线性网络的分类效果,代码如下: %比较线性和非线性bp网络的分类效果clc;clear;P=[-8 -8.1 -4 -4.2 3 3.1 5 5.1 ]; T=[0.0 0.081 0.97 0.99 0.01 0.03 1.1 1]; %创建线性网络net=newlind(P,T); w1=net.iw{1,1}原创 2010-04-18 11:35:00 · 2274 阅读 · 0 评论 -
自创建神经网络
自创建神经网络, 使用传递函数(激活函数)为logsig(S型对数函数)。具体实现如下: %自创建神经网络P=[-3,2];T=[0.4,0.8]; Wrange=-4:0.4:4;Brange=-4:0.4:4; %W值的行向量、B值的行向量 ES=errsurf(P,T,Wrange,Brange,logsig);原创 2010-04-18 13:57:00 · 1974 阅读 · 0 评论 -
比较节点个数不同时bp网络训练的误差效果及时间
比较节点个数不同时bp网络训练的误差效果及时间 %比较不同节点时网络训练的误差效果%time用于存储计算的时间time=[];%err用于存储计算tr.perf值err=[];for i=1:5 %分别进行取S1= 1 - 5节点时的网络训练 %起始CPU时间 t(i)=原创 2010-04-18 14:18:00 · 3038 阅读 · 1 评论 -
bp网络训练演示
bp网络训练演示 %bp网络训练演示%初始值P=-1:0.1:1;%目标值T=[0:0.314:6.28];T=sin(T);%%创建两层前向回馈网络net=newcf(minmax(P),[5,1],{tansig,purelin},traingd);% 初始化网络net = initnw(net,1)原创 2010-04-18 14:37:00 · 2528 阅读 · 1 评论 -
了解权值和偏差的变化程序
了解权值和偏差的变化程序 %了解权值和偏差的变化程序%分类P=[-6 -6.1 -4.1 -4 4 4.1 6 6.1];T=[0.0 0.0 0.97 0.99 0.01 0.03 1 1];%wv用于存储权值wv=[];%bv用于存储偏差值bv=[];err=[];%赋权值和偏差的初值W1=-0.0511;原创 2010-04-18 15:13:00 · 1719 阅读 · 0 评论 -
误差、权值、偏差的变化情况
预测数值时,误差、权值、偏差的变化情况 %误差、权值、偏差的变化情况P=[-3,2];T=[0.4,0.8]; max_epoch=100; %赋最大训练次数 err1=[];wv=[];bv=[]; %定义矩阵原创 2010-04-18 15:29:00 · 2204 阅读 · 0 评论 -
newcf函数的误差、权值情况
newcf函数的误差、权值情况 %newcf函数的误差、权值情况% bp网络的误差变化和权值情况P=[-6 -6.1 -4.1 -4 4 4.1 6 6.1];T=[0.0 0.0 0.97 0.99 0.01 0.03 1 1];%创建前向BP网络net=newcf(minmax(P),[1],{tansig},traingd);net.iw{1,1};原创 2010-04-18 15:35:00 · 3315 阅读 · 1 评论 -
具有模糊字母识别能力的bp网络实现
字母识别程序,采用了bp网络,具有一定的模糊识别能力: %recognize.m用于字母识别[alphabet,targets] = prodat;P =alphabet; % alphabet = [ letterA, letterB, ..., letterZ ];T = targets; % targets = eye(26);[R,Q] = size(P);%原创 2010-04-18 20:20:00 · 4939 阅读 · 10 评论 -
具有模糊字母识别能力的bp网络性能分析
性能分析代码如下:% charRecogonize.mclc;clear;%调用prodat产生alpabet字母表和targets,target为eye(26);[alphabet,targets] = prodat;P =alphabet; % alphabet = [ letterA, letterB, ..., letterZ ];T = targets; %原创 2010-04-18 22:03:00 · 2250 阅读 · 0 评论 -
线性网络分析
线性网络分析 % 线性网络分析clc;clear;p=[1.0 1.5 3.0 -1.2];t=[0.5 1.1 3.0 -1.0];net = newlind(p,t); %设计网络% Design a linear layerw=net.iw{1,1};原创 2010-04-19 20:38:00 · 2109 阅读 · 0 评论 -
bp网络实现CPI指标预测
某地的CPI指标,d1、d2、d3、f为连续四年的指数,现在选取d1、d2、d3作为网络初始值,f为网络目标值进行训练网络。具体数据如下:d1=[0.2356 0.2589 0.3000 0.2445 0.2589 0.2366 0.2897 0.2368 0.2569 0.2010 0.2111 0.3012];d2=[0.2562 0.3023 0.2454 0.原创 2010-04-19 21:54:00 · 1974 阅读 · 0 评论 -
bp网络实现预测
本例题采用了一个线性序列,在实际应用中可以应用不同的数据进行预测,例如每天的温度,产量等。具体实现如下: clear%本例题采用了一个线性序列,在实际应用中可以应用不同的数据进行预测,例如每天的温度,产量等% day=[1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...% 20原创 2010-04-19 22:58:00 · 2490 阅读 · 0 评论 -
竞争网络权值分析
竞争网络权值分析 %竞争网络权值分析clc;clear;P=[0.7071 0.6402 0.000 -0.1961 0.1961 -0.9285 -0.8762 -0.8192; 0.7071 0.7682 -1.000 -0.9806 -0.9806 0.3714 0.4819 0.5735];S=4;[R,Q]=size(P);net=newc原创 2010-04-19 19:11:00 · 1814 阅读 · 0 评论 -
三维绘图基础
三维绘图基础。原创 2017-09-17 08:59:11 · 6423 阅读 · 0 评论