ANN
superdont
电子工业出版社优秀作者,代表作《OpenCV轻松入门》(累计印刷超过20次),《计算机视觉40例》等。
展开
-
rands函数的用法
有如下程序,clc;clear;[a,b]=rands(5,1);ab[c,d]=rands(1,5);cd 输出如下:a = -0.5749 0.6785 0.2576 -0.7325 -0.5857b = 0.2144 0.2598 -0.2590原创 2010-04-17 21:21:00 · 25268 阅读 · 4 评论 -
具有模糊字母识别能力的bp网络性能分析
性能分析代码如下:% charRecogonize.mclc;clear;%调用prodat产生alpabet字母表和targets,target为eye(26);[alphabet,targets] = prodat;P =alphabet; % alphabet = [ letterA, letterB, ..., letterZ ];T = targets; %原创 2010-04-18 22:03:00 · 2250 阅读 · 0 评论 -
竞争网络权值分析
竞争网络权值分析 %竞争网络权值分析clc;clear;P=[0.7071 0.6402 0.000 -0.1961 0.1961 -0.9285 -0.8762 -0.8192; 0.7071 0.7682 -1.000 -0.9806 -0.9806 0.3714 0.4819 0.5735];S=4;[R,Q]=size(P);net=newc原创 2010-04-19 19:11:00 · 1814 阅读 · 0 评论 -
bp网络实现CPI指标预测
某地的CPI指标,d1、d2、d3、f为连续四年的指数,现在选取d1、d2、d3作为网络初始值,f为网络目标值进行训练网络。具体数据如下:d1=[0.2356 0.2589 0.3000 0.2445 0.2589 0.2366 0.2897 0.2368 0.2569 0.2010 0.2111 0.3012];d2=[0.2562 0.3023 0.2454 0.原创 2010-04-19 21:54:00 · 1974 阅读 · 0 评论 -
调整参数对bp网络的影响
调整参数对bp网络的影响,具体如下: clc;clear;x=1:1:79;P=rands(1,79);% T=rands(1,79);T=ones(1,79);net=newff(minmax(P),[25,1],{tansig,purelin},trainlm);net.trainParam.show=50;net.trainPa原创 2010-04-20 10:04:00 · 3614 阅读 · 0 评论 -
应用了归一化的预测
应用了归一化的预测,在归一化的过程中使用了premnmx和postmnmx,并在最后给出了这两个函数的应用情况。 %应用了归一化的预测clc;clear;originalData=rands(20,14);inputSampledata=originalData;outputData=rands(20,1);outputSampledata=outputDa原创 2010-04-20 20:54:00 · 3032 阅读 · 0 评论 -
最简单的径向基网络
最简单的径向基网络 %%最简单的径向基网络close allclcx=[-1:0.05:-0.05 0.05:0.05:1];% 扣除‘0’的不可除y=sin(pi*x)./(pi*x);aa=length(x);for i=1:aa for j=1:aa z(i,j)=y(i).*y(j); endend%%%%原创 2010-04-20 21:33:00 · 2146 阅读 · 0 评论 -
RBF预测模型
RBF预测模型 %RBF预测模型t_data=rands(30,6);%初始化数据tt=t_data(:,6);x=t_data(:,1:5);tt=tt;%随机选取中心c=x;%定义delta平方为样本各点的协方差之和delta=cov(x);% 计算协方差% Covariance matrixdelta=sum(delta);原创 2010-04-20 21:50:00 · 6440 阅读 · 0 评论 -
训练前后bp网络仿真结果分析
训练前后bp网络仿真结果分析,代码如下: %%%训练前后bp网络仿真结果分析clc;clear;%设定初始值和终值,终值为一cos序列p=[-1:0.05:1]; t=0:0.314:6.28*2;t=cos(t); %建立相应的BP网络 net=newff(minmax(p),[10,1],{tansig,purelin},trainlm原创 2010-04-20 11:20:00 · 3546 阅读 · 0 评论 -
用BP网络完成函数的逼近
用BP网络完成函数的逼近 ,此处主要为了演示效果,其中部分函数已经废弃。具体如下: % 用BP网络完成函数的逼近 clf reset figure(1) P=-1:.1:1; % T 为目标向量 T=0:0.314:6.28;T=sin(T);plot(P,T,+); title(训练向量); xlabel(输入向量 P);原创 2010-04-20 10:57:00 · 3773 阅读 · 0 评论 -
bp网络实现预测
本例题采用了一个线性序列,在实际应用中可以应用不同的数据进行预测,例如每天的温度,产量等。具体实现如下: clear%本例题采用了一个线性序列,在实际应用中可以应用不同的数据进行预测,例如每天的温度,产量等% day=[1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...% 20原创 2010-04-19 22:58:00 · 2490 阅读 · 0 评论 -
线性网络分析
线性网络分析 % 线性网络分析clc;clear;p=[1.0 1.5 3.0 -1.2];t=[0.5 1.1 3.0 -1.0];net = newlind(p,t); %设计网络% Design a linear layerw=net.iw{1,1};原创 2010-04-19 20:38:00 · 2109 阅读 · 0 评论 -
具有模糊字母识别能力的bp网络实现
字母识别程序,采用了bp网络,具有一定的模糊识别能力: %recognize.m用于字母识别[alphabet,targets] = prodat;P =alphabet; % alphabet = [ letterA, letterB, ..., letterZ ];T = targets; % targets = eye(26);[R,Q] = size(P);%原创 2010-04-18 20:20:00 · 4939 阅读 · 10 评论 -
前向反馈网络
该网络用于模拟一个sin函数,具体实现如下: %http://blog.csdn.net/superdont 我思故我在clc;clear;P=-1:0.1:1; %初始值的原始值,该值要经过一系列的岁渐变换用以显示ANN的特性P2=-1:0.1:1; %用以衡量大小% T=[0.8 0.66 0.461 0.1336 ... % -0.1 -0.201原创 2010-04-17 22:24:00 · 3595 阅读 · 0 评论 -
用newff模拟sin函数
用newff模拟sin函数 % http://blog.csdn.net/superdont 我思故我在P=-1:0.1:1; %建立目标值,是sin曲线上均匀取到的21个点T=0:0.314:6.28T=sin(T);%创建网络net=newff(minmax(P),[5,1],{tansig,purelin},traingda); %new原创 2010-04-18 10:11:00 · 2814 阅读 · 0 评论 -
比较线性网络和非线性网络的分类效果
比较线性网络和非线性网络的分类效果,代码如下: %比较线性和非线性bp网络的分类效果clc;clear;P=[-8 -8.1 -4 -4.2 3 3.1 5 5.1 ]; T=[0.0 0.081 0.97 0.99 0.01 0.03 1.1 1]; %创建线性网络net=newlind(P,T); w1=net.iw{1,1}原创 2010-04-18 11:35:00 · 2274 阅读 · 0 评论 -
自创建神经网络
自创建神经网络, 使用传递函数(激活函数)为logsig(S型对数函数)。具体实现如下: %自创建神经网络P=[-3,2];T=[0.4,0.8]; Wrange=-4:0.4:4;Brange=-4:0.4:4; %W值的行向量、B值的行向量 ES=errsurf(P,T,Wrange,Brange,logsig);原创 2010-04-18 13:57:00 · 1974 阅读 · 0 评论 -
比较节点个数不同时bp网络训练的误差效果及时间
比较节点个数不同时bp网络训练的误差效果及时间 %比较不同节点时网络训练的误差效果%time用于存储计算的时间time=[];%err用于存储计算tr.perf值err=[];for i=1:5 %分别进行取S1= 1 - 5节点时的网络训练 %起始CPU时间 t(i)=原创 2010-04-18 14:18:00 · 3038 阅读 · 1 评论 -
bp网络训练演示
bp网络训练演示 %bp网络训练演示%初始值P=-1:0.1:1;%目标值T=[0:0.314:6.28];T=sin(T);%%创建两层前向回馈网络net=newcf(minmax(P),[5,1],{tansig,purelin},traingd);% 初始化网络net = initnw(net,1)原创 2010-04-18 14:37:00 · 2528 阅读 · 1 评论 -
了解权值和偏差的变化程序
了解权值和偏差的变化程序 %了解权值和偏差的变化程序%分类P=[-6 -6.1 -4.1 -4 4 4.1 6 6.1];T=[0.0 0.0 0.97 0.99 0.01 0.03 1 1];%wv用于存储权值wv=[];%bv用于存储偏差值bv=[];err=[];%赋权值和偏差的初值W1=-0.0511;原创 2010-04-18 15:13:00 · 1719 阅读 · 0 评论 -
误差、权值、偏差的变化情况
预测数值时,误差、权值、偏差的变化情况 %误差、权值、偏差的变化情况P=[-3,2];T=[0.4,0.8]; max_epoch=100; %赋最大训练次数 err1=[];wv=[];bv=[]; %定义矩阵原创 2010-04-18 15:29:00 · 2204 阅读 · 0 评论 -
newcf函数的误差、权值情况
newcf函数的误差、权值情况 %newcf函数的误差、权值情况% bp网络的误差变化和权值情况P=[-6 -6.1 -4.1 -4 4 4.1 6 6.1];T=[0.0 0.0 0.97 0.99 0.01 0.03 1 1];%创建前向BP网络net=newcf(minmax(P),[1],{tansig},traingd);net.iw{1,1};原创 2010-04-18 15:35:00 · 3315 阅读 · 1 评论 -
bp网络参数说明
多个不同参数(主要是迭代步骤和误差值)控制下,运算结果的差异比较: %设置输入样本 P=0:0.05:4; %期望输出值 T=[0.5:0.025:1 0.975:-0.025:0 0.025:0.025:0.5]; %目标拟合曲线 %生成1-4-1BP网络 net=newff(minmax(P),[4 1],{logsig purelin},原创 2010-04-20 11:50:00 · 15540 阅读 · 0 评论