Deep metric learning 深度度量学习 总结

本文详细介绍了深度度量学习(DML),与传统的度量学习对比,强调DML如何通过深度结构解决非线性问题。讨论了DML的关键要素:距离度量、采样策略和损失函数,特别提到了采样策略的重要性以及各种损失函数的优缺点。文章还探讨了采样策略的发展,如孪生网络、三元组网络及其结合。通过对经典损失函数的解释,如对比损失、三元组损失和角损失,展示了DML如何优化数据点的分布,以增强相似性和可分性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近的工作用是深度度量学习的改进,这里将DML进行一个总结。

根据个人的理解,开篇用一句话介绍一下度量学习:

“不同于分类学习,度量学习是通过学习数据之间的相似性程度来获得一个更有意义或者说更具可分性的特征空间。”

Traditional metric learning

核心目的:

1 通过一个optimal的距离度量来判断样本之间的相似性

2 减小相似样本之间的距离,增加不相似样本之间的距离

限制条件:往往利用的的是线性映射,导致很难解决实际问题中的non-linear问题。(当然大部分传统方法都会遇到这个问题,最常见的方法就是核方法,譬如SVM原本只能解决线性分类,但是加入高斯核或多项式核就可以解决非线性分类,还有PCA-KPCA这些)

Deep metric learning(DML)

通过深层结构,学习到高抽象化的非线性特征以及数据之间的相似性关系。

DML三大关键点: 采样策略、合适的距离度量函数以及模型结构,因此当前DML模型往往基于指定任务在这些方面进行改进。[1]

距离度量

度量学习希望学习到一种distance metric,使得在该distance metric下,相似数据(不相似数据)能够在空间中有更好的分布。最经典的就是利用马氏距离(Mahalanobis distance),如下式,其中 x i ∈ R m x_i \in R^m xiRm
D ( x i , x j ) = ( x i − x j ) T M ( x j − x j ) D(x_i, x_j) = \sqrt{(x_i-x_j)^TM(x_j-x_j)} D(xi,xj)=(xixj)TM(xjxj)
作为一个距离函数,那么一定要包含几个性质:非负、对称以及三角不等,如果想在度量上进行创新一定要注意这些。马氏距离中的 M M M具有半正定和对称性,那么根据矩阵理论相关知识, M M M的特征值要全部非负,且存在n阶实矩阵 W W W使得 M = W T W M = W^TW M=WTW ,则上述式子可以转化为:
D ( x i , x j ) = ( x i − x j ) T

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值