自动驾驶
文章平均质量分 79
supergxt
这个作者很懒,什么都没留下…
展开
-
[源码解析] Voxelization具体步骤(Voxelnet)
该博文主要用于记录voxelization的具体实现(当前只用CPU版本,后续补充GPU CUDA加速版本),voxel是处理点云数据常用的预处理手段,当前主流的3D detection模型,基本都会考虑将点云网格化,方便后续高效抽feature在浏览voxelnet源码的过程中,发现当时的voxelization的过程还是基于CPU进行。原创 2023-05-19 17:11:48 · 625 阅读 · 0 评论 -
[车道线检测]Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
论文地址:Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection解决real-time efficiency. LaneATT是一个anchor based的车道线检测模型。基于全局信息来推理车道线信息,以此来解决车道线被占用,缺少markers等。Introduction车道线检测的挑战:extreme light and weather, lane markings occluded by objects, da原创 2022-05-24 20:20:24 · 497 阅读 · 0 评论 -
[车道线检测]CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
原文连接Introduction为了解决complet topologies. 提出了一个top-to-down的框架,先找出大致实例,再预测line shape(对应起来的bottom-to-up方法我理解就是先像素级分类,然后再经过后处理例如聚类等生成一个实例)基于conditional convolution 和 row-wise formulation。构造了一个Recurrent Instance Module模块克服复杂拓扑结构的实例。大部分分割方法还是bottom-up的,因此分配实例原创 2022-05-24 20:17:33 · 788 阅读 · 0 评论 -
[车道线检测]Ultra Fast Structure-aware Deep Lane Detection
原文地址:https://arxiv.org/abs/2004.11757将车道线检测看作一个利用全局特征进行row-based selecting 的问题。Introduction车道线检测分为传统图像处理方法和深度分割方法。需要实时性,因此需要低计算量的算法。车道线检测的另一个难点是复杂场景例如severe occlusion或者是extreme lighting conditions。对于这个问题需要更高水平的语义分析。已有的分割方法不能利用车道线的先验知识(例如rigidity and原创 2022-05-24 20:14:35 · 523 阅读 · 0 评论