自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 异常检测(Out-of-distribution detection\ anomaly detection)相关论文阅读

作者 Terrance DeVries 、Graham W. Taylor论文原地址:https://arxiv.org/abs/1802.04865Learning Confidence for OOD detection in NNOOD : where a network must determine whether or not an input is outside of the set on which it is expected to safely perform提到任何事物都有认知

2021-06-17 10:31:50 3234

原创 [源码解析] Voxelization具体步骤(Voxelnet)

该博文主要用于记录voxelization的具体实现(当前只用CPU版本,后续补充GPU CUDA加速版本),voxel是处理点云数据常用的预处理手段,当前主流的3D detection模型,基本都会考虑将点云网格化,方便后续高效抽feature在浏览voxelnet源码的过程中,发现当时的voxelization的过程还是基于CPU进行。

2023-05-19 17:11:48 620

原创 ubuntu16.04配置melodic版本ROS流程记录

ubuntu16.04配置melodic版本ROS

2022-07-20 09:59:59 599

原创 [车道线检测]Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection

论文地址:Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection解决real-time efficiency. LaneATT是一个anchor based的车道线检测模型。基于全局信息来推理车道线信息,以此来解决车道线被占用,缺少markers等。Introduction车道线检测的挑战:extreme light and weather, lane markings occluded by objects, da

2022-05-24 20:20:24 495

原创 [车道线检测]CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

原文连接Introduction为了解决complet topologies. 提出了一个top-to-down的框架,先找出大致实例,再预测line shape(对应起来的bottom-to-up方法我理解就是先像素级分类,然后再经过后处理例如聚类等生成一个实例)基于conditional convolution 和 row-wise formulation。构造了一个Recurrent Instance Module模块克服复杂拓扑结构的实例。大部分分割方法还是bottom-up的,因此分配实例

2022-05-24 20:17:33 783

原创 [车道线检测]Ultra Fast Structure-aware Deep Lane Detection

原文地址:https://arxiv.org/abs/2004.11757将车道线检测看作一个利用全局特征进行row-based selecting 的问题。Introduction车道线检测分为传统图像处理方法和深度分割方法。需要实时性,因此需要低计算量的算法。车道线检测的另一个难点是复杂场景例如severe occlusion或者是extreme lighting conditions。对于这个问题需要更高水平的语义分析。已有的分割方法不能利用车道线的先验知识(例如rigidity and

2022-05-24 20:14:35 515

原创 语义分割模型总结

之前看了一段时间OoD在语义分割中的应用,并且学习了一些基本的语义分割模型,总结记录本文目录语义分割FCNUnetSegNet(实时语义分割)Deeplab v1(VGG16)Deeplab v2(Resnet)Deeplab v3语义分割语义分割一直存着语义信息和细节信息的矛盾。语义信息足够,局部细节信息不足,细节就会模糊,边缘就会不精准;细节信息准确,语义信息欠缺,像素点预测就会错误。CNN能够很好地编码语义信息和细节信息,整合到一个局部到全局的特征金字塔中。FCNFCN (FCN:Fully

2022-04-05 10:58:24 7435

原创 [分布外检测]Entropy Maximization and Meta Classification for Out-of-Distribution Detection...实现记录

Aomaly Segmentation 项目记录该文档记录异常检测在自动驾驶语义分割场景中的应用。主要参考论文Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation摘要:Deep neural networks (DNNs) for the semantic segmentation of images are usually trained to

2022-04-05 10:53:53 3608

原创 ResNet pytorch 源码解读

ResNet pytorch 源码解读当下许多CV模型的backbone都采用resnet网络,而pytorch很方便的将resnet以对象的形式为广大使用者编写完成。但是想要真正参透resnet的结构,只会用还是不够的,因此在这篇文章里我会以经过我的查找和我个人的理解对源码进行解读。文章目录ResNet pytorch 源码解读简要基础模块ResNet详情运用Resnet类(重点)forwardwideresnet结束语简要提供的resnet的类型。因为个人使用情况,主要解读常见的resnet和

2021-12-15 16:41:25 4678

原创 python 余弦相似度计算(faiss)

faissfaiss是为稠密向量提供高效相似度搜索和聚类的框架。由Facebook AI Research研发。详见github https://github.com/facebookresearch/faissfaiss常用的两个相似度搜索是L2欧氏距离搜索和余弦距离搜索(注意不是余弦相似度)简单的使用流程:import faiss index = faiss.IndexFlatL2(d) # 建立L2索引,d是向量维度index = faiss.IndexFlatIP(d) # 建立In

2021-11-04 10:41:25 8731

原创 达梦数据库安装记录(DM7服务器版本)

达梦数据库安装记录(DM7服务器版本)安装注:在虚拟机上进行,建议先创建一个新用户(dmdba),可以参考一下linux下新用户创建。下载达梦数据库并且解压wget https://package.dameng.com/eco/adapter/dm/dm7/dm7_20210709_x86_rh6_64_ent.zipunzip dm7_20210709_x86_rh6_64_ent.zip直接装载iso镜像mount -o loop dm7_setup_rh7_64_ent_7.6

2021-10-08 17:00:18 374

原创 [异常检测]Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised

源码地址:https://github.com/donggong1/memae-anomaly-detection问题提出''It has been observed that sometimes the autoencoder “generalizes” so well that it can also reconstruct anomalies well, leading to the miss detection of anomalies ‘’“The assumption that anoma

2021-09-16 19:54:12 1092

原创 [异常检测]Explainable Deep One-Class Classfication论文阅读总结

Motivation“This transformation is highly non-linear, finding interpretations poses a significant challenge.”之前例如Deep-SVDD(DSVDD)等比较经典的无监督异常检测算法,很难解释一张图片为什么是异常的,因此这篇文章考虑将之前的DSVDD模型最终比较的向量调整为二维矩(explanation heatmap),在CIFAR-10 ImageNet上面有提升,且在MVTec-AD数据集上可以

2021-08-20 14:42:11 1564

原创 KL散度 pytorch实现

KL散度 KL DivergenceDKLD_{KL}DKL​ 是衡量两个概率分布之间的差异程度。考虑两个概率分布PPP, QQQ(譬如前者为模型输出data对应的分布,后者为期望的分布),则KL散度的定义如下:DKL=∑xP(x)logP(x)Q(x)D_{KL} = \sum_xP(x)log\frac{P(x)}{Q(x)} DKL​=x∑​P(x)logQ(x)P(x)​DKL=∫xP(x)logP(x)Q(x)D_{KL} = \int_xP(x)log\frac{P(x)}{Q(x

2021-08-09 17:02:24 2357

原创 [异常检测]Deep One-Class Classfication(Deep-SVDD) 论文阅读&源码分析

论文链接:http://proceedings.mlr.press/v80/ruff18a文章目录论文阅读摘要相关工作模型结构实验源码分析数据集制作训练论文阅读摘要“尽管deep learning在很多machine learning任务中取得成功,相对较少的deep learning方法被用在异常检测任务中。一些原本被用来做其他任务的深度模型例如生成模型或压缩模型尝试被用在异常检测任务中,但是没有基于异常检测目标训练的网络”在18年的时候,anomaly detection这个任务还没有什么深度

2021-07-22 15:31:38 3749 10

原创 异常检测数据集

在读论文的时候看到一个综合了异常检测各种数据集的网站,在这里进行分享http://odds.cs.stonybrook.edu/数据集类型包括:多维点异常图时间序列异常时间序列点异常对抗/攻击场景和安全数据集视频异常...

2021-06-28 15:29:48 4356 2

原创 Deep metric learning 深度度量学习 总结

最近的工作用是深度度量学习的改进,这里将DML进行一个总结。根据个人的理解,开篇用一句话介绍一下度量学习:“不同于分类学习,度量学习是通过学习数据之间的相似性程度来获得一个更有意义或者说更具可分性的特征空间。”Traditional metric learning核心目的:1 通过一个optimal的距离度量来判断样本之间的相似性2 减小相似样本之间的距离,增加不相似样本之间的距离限制条件:往往利用的的是线性映射,导致很难解决实际问题中的non-linear问题。(当然大部分传统方法都会遇到这

2021-06-23 15:54:44 6789 1

原创 Serverless Computing & Fass $ openwhisk快速部署、应用、实例

前一段时间接触到无服务计算,其实无服务计算在当前云计算平台中扮演很重要的作用(使用了aws lambda,发现Fass真的很好用)。当时发现国内对于Fass以及Openwhisk的介绍太少了,这里把自己认识到的一些概念以及部署openwhisk和自己做的一些无服务计算function的实例简单总结一下。Serverless Computing & Fass​ 无服务器计算是在无需最终用户管理的基础设施上托管应用程序的新方式,是IaaS(基础设施即服务)演进的下一个阶段。它将底层基础架构从开发人员

2021-06-22 19:56:51 1264 2

原创 Elsevier旗下期刊利用latex模板撰写论文记录

近期准备将做的一个工作投稿至Elsevier旗下的KBS期刊,官网提供single column和double column两种格式的latex模板,下载网站地址:https://www.ctan.org/tex-archive/macros/latex/contrib/els-cas-templates​ 为方便多人进行修改,本人选择用overleaf里面提供的elsevier cas-dc-template进行论文撰写,模板内容比较复杂,官方提供文档进行参考https://support.stmd

2021-06-18 18:35:03 9692 4

原创 长尾分布相关论文阅读

原文链接https://arxiv.org/abs/1912.02413解决问题:1 解决自然视觉中的长尾分布问题,属于extremely unbalanced recognition( real-world datasets always have skewed distributions with a long tail)2 现有的解决长尾分布方法基于 re-balancing,虽然可以提升tailed class的分类准确率,但是会影响到类内的分布情况(类内离散程度变大),也就是 classi

2021-06-09 11:25:12 323

原创 K-fold交叉验证(python版)

k-fold交叉验证sklearn可以实现训练集交叉验证划分训练集和验证集这里提供一个原创版本。class My_cv_iterator(): # 自写交叉验证 def __init__(self,data,label,cv_num): ''' data :输入特征 label : 输入标签 cv_num : k-fold 折数 return 返回k-fold的iterator 包括step, t

2020-11-01 15:40:16 1941

原创 模式识别-神经网络-知识总结与作业(python版)

神经网络(多层感知器)原理神经网络(neural network)也即多层感知器 multi-layer-perceptron(MLP)指的是通过构造不同结构神经元结构进行前向传播并根据任务设计一定的损失函数进行反向传播,最终获得的模型预备知识神经元:Oj=f(∑inωjxj+b)O_j = f(\sum_i^n\omega_jx_j+b)Oj​=f(i∑n​ωj​xj​+b)其中f为激活函数,wjw_jwj​为第j个输入对应的权重,b为偏置激活函数 activate function:激活

2020-11-01 15:34:29 1423

原创 模式识别-贝叶斯分类器-知识总结与作业(python版)

基于贝叶斯理论的分类器采用贝叶斯决策理论的前提为:目标观测值随机且服从一定的分布贝叶斯公式设样本空间S划分为Bi,A为某一事件,则在A发生的条件下Bi发生的概率为:P(Bi∣A)=P(BiA)/P(A)=P(A∣Bi)P(Bi)/P(A)P(B_i|A)=P(B_iA)/P(A)=P(A|B_i)P(B_i)/P(A)P(Bi​∣A)=P(Bi​A)/P(A)=P(A∣Bi​)P(Bi​)/P(A)关键概念:先验概率P(Bi)P(B_i)P(Bi​)、后验概率P(Bi∣A)P(B_i|A)P(Bi

2020-10-07 10:45:12 2287 1

原创 python socket 多线程实现

近期需要用到socket协议进行hilenskit与ubuntu系统进行信息传输,同时需要用到多线程保证主线程不受到影响。主要内容包括socket语法、python多线程python socket基本语法socket.socket([family[, type[, proto]]])通过该函数创建一个socket类family包括AF_UNIX或者AF_INET,常用AF_INET服务器端socket创建HOST = '' # 不输入为默认本地地址,需要通信的时候统一地址PORT = 77

2020-09-13 13:55:13 2520

原创 机器学习日志(聚类 k-means)

聚类介绍:聚类属于典型的无监督学习(unsupervised learning),针对label未知的数据集进行划分,获得目标数量的“簇”(划分的不相交的子集)主要概念:划分的不相交的簇:,表示所划分的簇聚类主要性能度量:包括外部指标与内部指标,外部指标是与参考模型label进行比较,内部指标则不参考任何模型,外部指标利用确定划分正确、划分错误等数量来进行评估(不过我认为这...

2019-10-23 10:53:29 1233

原创 机器学习学习日志--线性分类器

之前所讲的KNN是一种无参数的算法,我们只需要把要测试的数据跟已有的数据进行比较就可以得出结果,但是分类器必须要把所有的数据集保存下来,每一次比较都需要拿出来一个一个比较,复杂度很大...而线性分类器是CNN的基础,(我理解的就是一层神经网络),从linear classifier就需要参数的参与了。利用CIFAR-10dataset的数据集进行学习首先,最普通的图片是三色通路构成...

2018-06-06 23:49:22 745

原创 机器学习学习日志--KNN

渣渣的学习日志(一)---KNN算法根据斯坦福大学CS231n的课程,在学习CNN之前,要先对一些机器学习的算法进行系统的学习,最先接触到的就是KNN算法KNN(k-nearest neighbor)算法用我个人的理解就是,通过对测试集和数据集进行特征值上的距离计算,来确定距离测试集最近的K个数据,(K值不是定死的,andrej的意思是要通过一种交叉算法来确定最好的K),这K个数据的标签进...

2018-06-05 17:15:40 654

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除