Anti-Spoofing via Noise Modeling; ECCV2018; Xiaoming Liu; MSU; Face De-Spoofing

以往的Anti-Spoofing在基于深度学习方法做的时候通常当做一个二分类,输出是Real/Spoof,内部模型是一个黑箱。这个方法将De-Spoofing的模型的内部机理考虑了进去。

方法的假设大致有以下几点,1: 对于照片、视频播放来进行的Spoof会引入噪声,而这个噪声普遍存在且可重复。

因此,x = A\hat{x} + n = \hat{x} + (A - \mathbb{I})\hat{x} + n = \hat{x} + N(\hat{x}),其中的\hat{x}是原图,N(\hat{x})是一个与原始图片有关的噪声函数,这个公式就是算法的核心,文章的网络就是为了估计这个噪声函数,当成功得到准确的噪声模型,原始图像与spoofing图像之间就可以相互转换。

可是想要估计这个噪声函数N,有着以下几点困难,

1: 没有GroundTruth,即\hat{x}

2: Spoofing的方式有很多,每一种都有不同的噪声模式。

如何来解决这些问题呢?

要估计N(\hat{x})当然要有一个网络,可以使用全卷积网络来完成,得到N(\hat{x})之后,与I一起,便可以恢复出原始图像\hat{I}。用Magnitude Loss和傅里叶域分析得到Repetitive Loss来监督估计的N(\hat{x})。而对于恢复出的原始图像,要其进行评估。一方面,这里采用的思想类似于GAN,将其与Spoofing图像一起输入VQ网络判断是真实的图像还是Spoofing;另一方面,输入DQ网络,进行训练。另外在encoder和decoder中间还加了一层0\1 MAP损失来进行监督。最终网络的损失函数由上述五项加权得到。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值