Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-apseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-apseudoprime.
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0Sample Output
no no yes no yes yes
#include <iostream>
#include <queue>
#include <map>
#include <cstdio>
#include <algorithm>
#include <string>
#include <set>
typedef __int64 ll;
using namespace std;
bool is_prime(ll n){
for(int i=3;i*i<=n;i+=2){
if(n%i==0)return false;
}
return n!=1;
}
ll mod_pow(ll x,ll n,ll mod){
ll res=1;
while(n>0){
if(n&1)res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
int main(){
ll p,a;
while(cin>>p>>a){
if(p==0&&a==0)break;
if(is_prime(p)){
cout<<"no"<<endl;
}
else{
if(mod_pow(a,p,p)==a){
cout<<"yes"<<endl;
}
else{
cout<<"no"<<endl;
}
}
}
return 0;
}